

Proceedings of the 17th International Congress on Computer
Science Research CIICC´11
October 26-28, 2011, Morelia, Mexico

 329

An Efficiently Computable Measure for Multiobjective
Solution-front Quality

Elisa Schaeffer

Universidad Autónoma de Nuevo León (Mexico)

elisa.schaeffer@uanl.edu.mx

Abstract

In multiobjective optimization, the challenge is not to find one optimal solution but rather

a set of solutions that all excel in terms of at least one of the objective functions and are tolerable
in terms of the remaining objectives. In selecting such a set, among numerous options, it is
necessary to apply a quality measure that determines whether or not the selection is good in some
general sense. In this work, we propose and study one such quality measure, computable in
asymptotic polynomial time in terms of both the number of solution candidates and the number
of objective functions; existing literature often fails on this second point. We present some
experimental results on the method.

Key words: Multiobjetive solutions, Pareto front, Quality front, measure.

1. Introduction

Optimization is, mathematically speaking, the process of choosing values for a set of
variables subject to a set of restrictions in such a way that an objective function reaches an
extremal value, that is, a maximum or a minimum, depending on the problem. Mathematically,
maximizing a function f() is equivalent to minimizing its negative −f(), for which in this paper
we concentrate only on minimization. Special cases of optimization include those where the
variables only take integer values (called integer programming [28]), those where all the
restrictions are linear functions (called linear programming [2]), and convex optimization [4] (a
class slightly larger than the previous), among others.

An assignment to the variables that satisfies all the restrictions is called a feasible

solution. A feasible solution that reaches a minimum for an objective function is called an
optimal solution, or simply the optimum. There may very well exist more than one optimal
solution for a given optimization problem.

In multiobjective optimization (cf. [19, 22]), there are two or more (in practise, often

much more than two) objective functions that usually contradict each other partially — a feasible
solution that is an optimum to one function is not necessarily an optimum of the other function
and vice versa. When there are numerous objective functions, this often gets quite messy from
the point of view of choosing a feasible solution to be applied in practice, as the simple definition
of an optimum simply does not extend to multiobjective optimization.

 330

The concept that replaces the universal optimality of the single-objective case in
multiobjective optimization is the Pareto front, which is a subset of feasible solutions that are
Pareto optimal (also: Pareto efficient). The definition of Pareto optimality is based on a
dominance relation: a feasible solution x Pareto-dominates another feasible solution x′ if : ∀i ∈
1, 2 , 3, …, d : fi (x) ≥ fi (x’), equation (1); meaning that x is always at least as good as x′ under
any objective function. The dominance is strict if x actually improves on at least one objective
function. Based on these definitions, a feasible solution x is Pareto optimal within a set of
feasible solutions X with respect to a set of d objective functions if x is not Pareto dominated by
any other x′ ∈ X. Figure 1 shows an example for a two-dimensional case (that is, d = 2) with n =
10 feasible solutions, k = 4 which are Pareto optimal. Note that the Pareto front spans by
definition a convex hull to the set of feasible solutions. We will return to this later.

The subset formed by all Pareto-optimal solutions is called a Pareto front. A solution

chosen in practice should in principle always be part of the Pareto front, as choosing any other
feasible solution would imply that at least one of the objective functions could have been
improved without harming the values of the other objective functions if one were to choose a
solution that does form part of the front. An interesting, and in practise unpleasant observation is
that when the number of objective functions is high, a very large percentage of the feasible
solutions are Pareto-optimal [10, 14]. This makes in impractical to base algorithms on operating
on the entire Pareto front and evidently makes it impossible for a human decision maker to
review the options.

Figure 1. A set of feasible solutions, drawn as circles on a plane at the coordinates indicated by
the values of the two objective functions (both being minimized). The black circles are Pareto

optimal, as no other feasible solution dominates them.

The methods for creating a set of feasible solutions are numerous. As the exact solution

of multiobjective optimization problems with several variables, restrictions, and objective
functions is computationally very heavy (although integer programming as a decision problem
belongs to the complexity class P, permitting its efficient solution, integer programming belongs
to the class NP; all the existing algorithms scales very poorly in the worst case), most of the
successful methods for generating good-quality feasible solutions are heuristics, meaning that
there is no theoretical guarantee per sé of them producing the best possible solutions.
Nevertheless, they do produce large quantities of solutions that are good enough for many
practical applications. These methods include particle-swarm optimization [20], genetic
algorithms [13, 16, 18], other evolutionary approaches [8], and methods that apply weights to

 331

convert the set of objective functions into a single linear combination of them [15]. Surveys on
the field include those of Fonseca and Fleming [12], the dissertation of Van Veldhuizen [25] and
the related article [26], as well as the book of Coello Coello et al. [6].

In this work, we do not attempt to generate either feasible solutions or Pareto fronts, but

rather propose a method for comparing two Pareto fronts to each other in order to determine
which is better in a sense that we will define in the next section. The method does not require,
actually, that the compared subsets are in fact Pareto optimal — it is sometimes computationally
hard to determine a Pareto front when the feasible solutions are numerous (as is the usual case in
evolutionary algorithms) or when the objective functions are either tedious to evaluate or simply
too many.

2. Front Quality

Given a large set of feasible solutions, the end user of an optimization method wishes to
visualize somehow those that are Pareto optimal and then make, often by human judgement, a
decision over which to select. The end user has an easier task if instead of presenting him or her
with the entire Pareto front, a representative subset of it is shown, as this eases the cognitive load
of comparing among the multiple alternatives by presenting less options and by making sure that
the options shown are qualitatively different, that is, not very similar one to another.

This same situation occurs in an iterative heuristic algorithm. One iteration produced a

possibly very large set of feasible solutions and the algorithm must choose a subset of these to be
the basis of the next iteration. However, it is not a good choice to stick with only those solutions
that are good with respect to a certain objective function or a subset of objective functions — the
representatives should be somehow uniformly spanned over the Pareto front in the set of feasible
solutions rather than clustered together. A third scenario is supposing that two or more
algorithms for used to compute a Pareto front for the same problem. How to assess the quality of
these solutions with respect to one another?

This is easiest to understand in the two-dimensional case, as it can be easily illustrated,

but conceptually generalizes easily to any arbitrary higher dimension n. For simplicity, we
restrict this work to objective functions that map feasible solutions, their set denoted by Ω, to
real values ℜ, that is, fi : Ω→ ℜ, that is, fi (x) = r. In our work, the number of variables that
form the vector x is not relevant — we are only interested in the value-space of the objective-
function vector (f1(), f2(), . . . , fd()). Each feasible solution is hence represented as a point in
ℜd, that is, a d-dimensional vector v not of variable values, but of the values to which the d
objective functions evaluate given x.

Now, for the end user choosing among options and well as for the iterative heuristic

deciding which solutions to use for the next iteration and which to discard, a good subset of
solutions is one that is either a subset of the Pareto front or a subset that is very close to the
Pareto front (in the case that the evaluation of the Pareto-dominance relation is too costly,
computation-wise). Also, a good subset is one in which the points are evenly separated in ℜd;
this latter property is illustrated in Figure 2 for the two-dimensional case.

 332

Figure 2. Both figures show a set of solutions in a two-dimensional space for a minimization

problem. On the left, an evenly spaced front with good diversity is shown. On the right, there is
an example of a front with poor diversity, as the solutions are grouped together. Notice that the

theoretical best case is the origin, in the lower-left corner.

2.1 Existing work

As noted when defining a Pareto front in Section 1, the Pareto fronts can be computed by
calculating the convex hull for the point set, limiting the candidate points by cutting with the
hyperplane spanned by the minimum values of all d objective functions. This is due to the
minimum point of each objective function necessarily being part of the Pareto front and the front
itself being convex. A good algorithm for a few dimensions is the quickhull [1], with a
randomized version for two dimensions [27]. These are efficient algorithms for two or three
dimensions, or order O(n log n) where n is the number of points, but for higher orders, the mere
input-processing steps suffer from the increasing number of dimensions, making the algorithm
slow —the number of dimensions d appears as an exponent in the complexity. The good thing is
that the outcome will necessarily be a Pareto front, but not a uniformly distributed subset, but the
entire Pareto front. This would then need to be sampled or pruned in some sense to produce the
uniformly spaced subset of a desired cardinality k ≤ n.

Schott [23] manages uniformity using equidistant points on the axis in a sense protecting

them on the front, whereas Meng et al. [29] propose a measure based on constructing a reference
set — uniformly spaced — and the comparing the front candidates to that reference solution,
which they limit to two dimensions and the unconstrained optimization. Zeng [30] also propose
comparing the candidate fronts with the exact Pareto front, but extend their work for three or
more dimensions. An established measure for solution subset quality is the hypervolume [17, 31]
of the volume spanned by convex hull of the n points, computable in O(n log n+nd/2 log n) time
for points in �d [3]. A survey of existing methods for multiobjective optimization solution
quality assessment is given by Cheng et al. [5].

Deb and Jain [9] note that it is important for any metric to give values in a fixed range,

such as (0, 1) for comparability and that slight improvements in the subsets should yield slight
improvements in the metric, be computationally inexpensive, as well as scalable to an arbitrary
number of objective functions. They also discuss separately the question of convergence towards
the actual Pareto front and the diversity, that is, the ideally uniform separation of the front. In this

 333

work we propose a measure that can be used either as an exact measure or a randomized,
approximate measure that requires less computation.

2.2 Proposed measure

As stated in previous sections, denoting the number of objective functions by d and

assuming that each objective function maps an arbitrary structure that represents the solution
candidate to a real number, the fitness of each solution is completely represented by a vector in
ℜd, a d-dimensional point. As Meng et al. [29], we assume as a starting point that the objective
functions are normalized; in our work, we assume that the values are in (0, 1). We propose a
measure that has polynomial asymptotic complexity in both the number of points n and the
number of dimensions d.

In this section, for simplicity, we will use the term “front” to refer to an arbitrary subset

of feasible solutions, whether or not it be a set in which there are no internally Pareto-dominated
points. We denote the cardinality of this set by k. Usually, k « n, as the decision maker wishes to
see just a few representative solutions and a small fraction of the solutions generated in one
iteration will be used as a basis for the next one. Treating k as a constant parameter, it is easy to
see that the computational complexity of the measure proposed in this work is controllable by the
parameter k.

First, a distance measure is imposed on the set of d-dimensional points that form a front

F; we denote the cardinality of the front as |F| = k. In this work we use the Euclidean distance for
simplicity, that is,

(2)

where v and w are vectors in ℜd and vi is the i-th element of the vector v. In fact, any distance
measure that fulfills the triangle inequality would do just as well. Here the important thing is that
the distance computation for two points in ℜd takes O(d) time.

The k-by-k matrix formed by the distances is denoted by D and is computable in O(dn2)

time. For extremely high values of d, we leave for further work the possibility of computing the
distance only for a small random sample of the dimensions at each step in order to bring down
the computational cost; for the algorithm application scenario, this random sample could be
retaken at each iteration in order to seek representation of all objective functions over time,
whereas in the decision-maker scenario the measure could be repeated a constant c times using
distinct random samples and still save in computational complexity when comparing to using all
d objective functions. However, as we show later in the experiments, the exact computation of
the measure remains feasible for rather high values of d as long as k remains of moderate size.

We then compute a minimum spanning tree (MST) on a weighted graph (for brevity, we

do not enter to details of graph-theoretical terminology —we recommend the textbooks of
Cormen et al. [7] on the algorithmic aspects and Diestel [11] for the mathematical aspects) using

 334

the points v ∈ F as vertices and the matrix D determines the edge weights; this can be achieved
in polynomial time in n using the classical algorithms of Prim-Jarnik or Kruskal very simply in
O(n2) time, which can be further improved on a priority-queue or heap-based implementation,
especially for sparse graphs (see [21] for a relative new MST algorithm).

We modify the MST algorithm slightly to simultaneously keep track of the degree of

each vertex in the resulting spanning tree and denote these values by deg (v). Also, the maximum
edge weight employed in the MST is to be stored and is here denoted by ρ.

Now we borrow a concept from fractal geometry where sets of points are covered by

boxes or circles1 (see for example the work of) and compute the coverage overhead of the MST
if a n-dimensional hyperball of diameter ρ /2 were to be placed at each point. For simplicity and
efficiency, we ignore possible overlaps of hyperballs of vertices that are not neighbors in the
MST. By definition of ρ, the longest edge will be covered exactly once. We compute sum of the
fragments of each edge that are covered by both endpoints, which simplifies into computing the
difference between ρ and the length of the edge:

(3)

and write

(4)

for the global coverage overhead, smaller the better , normalized over the k − 1 edges of the
MST. See Figure 3 for an illustration.

Should the MST be a line, as is the case in the example shown in Figure 3, this would be

sufficient for proceeding to the next step of the measure computation. However, in general, sets
of solutions in the objective space that need to be evaluated during the execution of an
optimization algorithm are composed of points clustered together or points that are in a sense
outliers to the rest of the front. Such structures easily rise to branching in the resulting MST.

Figure 3. The redundancy in coverage of the front formed by connecting points into a minimum
spanning tree, illustrated in a two-dimensional case. The covering ρ /2-radius circles are drawn
with dashed lines, whereas the parts of the edges of the MST that are multiply covered by the

circles are drawn thicker.

1 The relation between the numbers of covering elements versus the size of each covering element determines some

of the existing measures of fractal dimension.

 335

In terms of what intuitively is front quality, any front candidate that branches is inferior
to one that does not, as illustrated in Figure 4. The branching is easiest measures in terms of the
vertex degrees: the higher the degree, the more severe the disadvantage. If our task was the
optimization of the subset, we could attempt to cut off the branches or “straighten them out” by
“jumping ahead”, as in the well-known factor 2 approximation algorithm for the TSP, but as we
merely wish to measure the quality of the front, simple penalization suffices for our purposes.

We therefore seek to impose a penalty to the redundant coverage of each edge in terms of
the degrees of its endpoints. Note that this penalty cannot simply be a linear function of the
degrees, as the sum of the degrees is always 2(k − 1) for any MST. We use the following:

(5)

as a very simple penalty function for degrees above two. We now write

(6)

in order to normalize the penalty in terms of the ideal case, which is a line-like MST T+,
producing zero total penalty, and what we consider the worst case, which is a star-topology MST
T− where one vertex is connected to all the rest, producing a total penalty k − 1:

(7)

for the global normalized degree quality, the larger the better. We write it in this fashion to be
generalizable for other penalty functions that do not necessarily assign zero value to the ideal
case, not the maximum value to the worst case; in this latter case one needs to additionally cut
off the value of Ξ(T) so it never exceeds Ξ(T−).

Also, a convex front is generally preferable to a non-convex one, for which the convexity

must be somehow transformed into a measure over the MST created. We use the angles between
consecutive edges in the MST, as illustrated in Figure 5. For simplicity and efficiency, we
compute for each vertex of degree at least two the angle between its two longest edges (in case of
branching) and denote this angle, when defined, by αv. We then compute the average µα over the
defined angles and calculate for each vertex a measure of deviation from the average, normalized
to (0, 1):

(8)

Note that neither is a Pareto front; on the right, the first three points from the top and the

last two points from the bottom along the line would not form part of a Pareto front which will
only give zero if all the points lie on the same exact line in ℜd and small values if the curvature
is smooth and line-like.

 336

Figure 4. On the left, a branching MST, that is, a tree that has vertices with degree greater than
two. On the right, an MST with no branching that should intuitively correspond to a higher-

quality front. The arrows indicate the direction of the optimum for each objective function. The
degrees of the vertices are used to measure the branching factor of an MST.

Figure 5. On the left, a non-convex MST, and on the right, a convex MST that should intuitively
correspond to a higher-quality front. The arrows indicate the direction of the optimum for each

objective function. The angles used to measure convexity are indicated by dashed lines.

Hence we write

(9)

to account for the angles produced by the edge pairs considered. Another option for smoothness
would be the autocorrelations of the very degrees along the MST, which we leave to further
work.

This measure does not yet take into account the orientation of the front in the space ℜd

—we use the angles formed between the origin and two consecutive vertices (that is, neighbors
in the MST), computed simply as

(10)

A front is oriented facing the origin if these angles are large and perpendicular to that if
they are generally very small. We hence take the sum of these angles, normalized by k − 1 as
there are k − 1 edges in the tree, and include it in the measure:

(11)

the bigger the better.

 337

We still have the distance from the optimum to account for. If we sum the distances from
the origin (the theoretical ideal point, assuming normalization of the objective functions to a non-
negative range) to all points and divide by the square of k to normalize,

(12)

and again we normalize and revert this to be a penalty:

(13)

the normalization being this way as we sum k distances, each of which at most d, given that the
objective functions are normalized to (0, 1). The value of D(F) will be smaller to fronts that are
in general oriented closer to the origin and can be used as a divisor to increase further those
measures that correspond to good fronts. The normalization here assumes that the values vi ∈
(0, 1) – if this is not the case, values above one may result, although the measure is still
comparable between fronts of different sizes for the same problem instance.

We then proceed to calculate the front quality Q(F) by combining the defined penalties in

the following simple manner:

(14)

where T is the set of edges included in the MST and the components as defined earlier in this
section in Equations 11, 13, 4, and 9, and 7. Do note that in face were are facing a multiobjective
optimization problem: the ideal front would minimize all penalties.

The measure will give values in (0, 1) and we write it as a percentage, that is,

100×Q(F)%. Higher values of the measure indicate better fronts. Note that this is but one
possible combination (we also experimented with the product, but the values are very small and
less readable) and that it could easily be parametrized; we leave to future work the inclusion of
weights to the penalty functions, together with mechanisms for automatic and adaptive
parametrization.

3. Experimental Results

In this section, we demonstrate the behavior, scalability, and applicability of the proposed
measure in different settings. We begin by offering some more visual examples in low
dimensions, then vary both the number of solutions and the number of objective functions to
study the scalability aspects, and finally integrate the proposed measure to a simple evolutionary
algorithm to demonstrate a possible application.

3.1 Visual examples

We begin by demonstrating the behavior of the proposed measure on small two-

 338

dimensional examples that are easy to visualize and understand. Figure 6 shows six point sets of
slightly distinct cardinalities and.the corresponding MST constructions and the values obtained
for the proposed quality measure. We observe that the measure prefers smooth and evenly
spaced curves that are oriented as a wave towards the origin (the right-most column), less so
vertical arrangements (middle column), even less non-linear arrangements (lower left corner),
and the least clustered arrangements (upper left corner).

Figure 6. Above, six example point sets in two dimensions; the number of points is shown for

each set. Below, their resulting MST together with the quality-measure value of each.

To illustrate the manner in which the measure changes when the front is modified, we
include in Figure 7 a few examples on how the quality measure changes for similar fronts where
the major difference is in the presence or absence of a certain point or a few points. It can be
seen that the proposed measure rewards even placement and smoothness of the front. It is also
visible that the measure evolves with small changes as small modifications are introduced to the
front as recommended by Deb and Jain [9].

Figure 7. Examples of similar fronts (one group per line) and the corresponding values of the

proposed quality measure Q(F) for each front.

3.2 Scalability

We generated instances by placing n points uniformly at random in a d-dimensional

 339

hypercube (we generated a uniform pseudo-random angle β and the used fi = (sin (i · β) + 0.5) for
i = 1, 2, ..., d. This is obviously artificial, but the purpose is to study the scalability of the
proposed measure in terms of the runtime when varying both n and d. We chose n = 16, 32, 64, .
. . and d = 2, 4, 8, 16, . . . for the experiments and ran 30 independent trials for each
combination, registering the runtime in seconds per each and then computing the average and
standard deviation over the set of repetition. All experiments were ran, non-exclusively on the
background of normal use, on a MacBook Air with a 1.4 GHz Intel Core 2 Duo with 4 GB of
1,067MHz DDR3 RAM under OS X 10.7 Lion. The scalability experiment program code was
written in ANSI C.

Figure 8 shows how the values vary for some fixed d and multiple n and vice versa. Not

all combinations were included, as the curves overlap, which affects adversely the legibility of
the graphic. We can see that the runtime increases clearly faster in terms of the number of points
than with the number of objective functions. This is good, as it permits us to continue to higher
dimensions with little complication, as long as we maintain k small, which is not at all
impossible in many practical applications of these types of measures.

Figure 8. Above, the average runtime (in seconds) for different values of n with d ∈ {8, 16, 32},
and below, the same for d with n ∈ {64, 128, 256}; the standard deviation is drawn as an error

bar on each dot, but these are too small to be seen. Notice the logarithmic scale of the axes.

The relation between d and n and the runtime is illustrated in Figure 9, where it is clearly

visible that the proposed method is not so much sensitive to the number of objective functions as

 340

it is to the number of points; for the decision-makes scenario where only a few points are to be
selected for consideration, this is very practical. For large, low-dimensional sets, the existing
methods in the literature outperform the proposed approach, whereas for higher dimensions, this
measure is computationally competitive.

Figure 9. The size of each circle indicates the logarithm of the average runtime for each (n, d)

pair. Notice also the logarithmic scale on both axes.

3.3 Graph coloring

As generating data uniformly at random is rarely realistic, we also experimented on a
combinatorial optimization problem, namely the graph coloring optimization problem. The
corresponding decision problem asks whether it is possible to color a given graph G = (V,E)
using no more than γ colors such that no pair of vertices from V that is connected by an edge in
E shares a color; this is known to be NP complete. Consequently, as verifying the correctness of
a suggested coloring is doable in polynomial time and logarithmic space, the optimization
problem is NP hard.

A color assignment C is a listing of the colors assigned to each vertex in V. A color class

Ci ⊆ C is a set of vertices all colored with the color i; we are here interested in the cardinalities
(that is, the number of elements in each) of the color classes, as we will work with the following
multiobjective formulation of the problem: given a graph G = (V,E), find a color assignment C
that minimizes

1. f1(C) = the number of colors γ used in the coloring divided by |V |,
2. f2(G, C) = the number of conflicts present divided by |E|,
3. f3(G, C) = the number of triplets in G where the two end points share color, divided by ()3

V

4. f4(C) = the minimum of the maximum of | Ci | divided by |V |,
5. f5(C) = the maximum of the minimum of | Ci | divided by |V |,
6. f6(C) = the maximum difference over all i from the average of the | Ci | divided by |V |,

with

(15)

counting effectively second-neighbor color conflicts, and

 341

(16)

The divisions by graph order and size are included in order to normalize the objective

functions to yield comparable values for graphs that differ greatly in order and/or size.

We implemented in Python a very simple genetic algorithm, designed to avoid parameter

selection, using C represented as a fixed-order vector, one element per each vertex, as the
chromosome and performing linear crossovers at a uniform random point, picking each pair of
distinct solutions once to cross in each iteration, as well as applying a uniform random mutation
in one element to each solution present, interchanging the color of one vertex with that of
another vertex within that coloring. Duplicate solutions are not permitted to enter the population
and all colorings are simplified by relabeling the colors with consecutive values 1, 2, . . . when
intermediate colors are absent. Note that by design there is no mechanism whatsoever to
explicitly and purposefully improve the population at the expansion phase —all solutions are
equally mutated and crossed.2

The number of solutions per iteration was fixed at h = ⌈log(|V |)⌉ + d, where d = 6 is the

number of objective functions. For the number of generations to compute we used simply |V |+h,
which would be very little for practical purposes, but serves well for our demonstration. The
initial solutions for the first iteration are generated by first choosing uniformly at random a value
γ ∈ [1, |V |] and the placing a color from this range for each vertex, also uniformly at random.

We select the set of h solutions to pass on to the next generation. In the first phase, we

use a greedy fill that incorporated solutions incrementally in random order by greedily
optimizing of the resulting front (by a subprocess call to the ANSI C routine implemented for the
previous experiments): a candidate for inclusion to the chosen set of is accepted when it either
improves the existing front, yields at last 99% of the quality of the front formed by the
previously selected solutions2, or simply attains a quality at least 90% when included in the set.
The candidate is rejected when it fails to fulfill all three conditions. This growth mechanism is
cut off when cardinality h is reached.

On a second pass, carried out if h solutions have not yet been selected, each presently not

selected solution is reconsidered for a random preferential inclusion: each candidate v is accepted
with probability to give preference to including those that have lower values for the objectives on
average, and again the procedure is cut off when cardinality h is reached.

(17)

2 Note that this percentage together with h limit how much the quality can decrease in total during the greedy fill

phase, and hence should be adjusted to a tighter value when h is large.

 342

On a third pass, should cardinality h still not be attained, presently unselected solutions
are incorporated uniformly at random to reach the desired cardinality. We record the percentage
of each type if fill (that is, the proportion of solutions that were chosen based on front quality,
preferentially based on the objective functions, or uniformly at random) as well as the quality of
the front with which the greedy procedure terminated at each iteration.

Note that in this simplistic scenario, we actually only evaluate the objective function

upon considering a coloring for inclusion to the next-iteration seed population. Not all solution
candidates necessarily get evaluated. We are not so much trying to solve the problem as we are
seeking to show how the measure works.

For purposes of comparison, we executed this algorithm both with and without the greedy

phase, 10 independent repetitions each way. We refer to the complete version as the greedy
version and to the reduced version as the random version. We experimented on DIMACS format
graph-coloring benchmark instances [24]; we show here the results for one graph only, for
brevity —combining results for different-structured graphs would result in uninformative or even
confusing plots.

We chose a Mycielski transformation graph myciel4.col, which is small enough to

visualize comfortably the resulting fronts with |V| = 23 and |E| = 71. We report the averages and
standard deviations over the 10 replicas. In Figure 10, we plot the front quality Q(F) of the
population at each iteration (both for the greedy and the random version) and the fill percentage
for the greedy version (the third pass was not needed in any of the replicas for either version, for
which it is not plotted), together with the minimum and average value per objective function per
iteration of each fi.

Figure 10 shows that the greedy procedure almost always fills the selected solution set

and that this mechanisms maintains a higher front quality than the random preferential method
based purely on Equation 17.

We also observe that the front qualities are relatively stable over the 10 replicas, whereas

the fill percentage of the greedy step varies greatly, as is natural to a greedy search as it
occasionally gets stuck at a local optima from which it is difficult to break out. It is also
noteworthy that some of the averages remain well above the minimums, indicating an adequate
diversity within each individual objective function.

To examine whether the greedy method actually helped in the front diversity, we examine

the populations produced at the last iteration of each run for both of the methods. As visualizing
the six-dimensional space is not straightforward, we plot a few projections to two-dimensional

space: f1 versus f2, f3 versus f4, and f5 versus f6, these being but a sample of the ()
6
2 = 15

possible projections, for the sake of brevity. We plot the overlays of the 10 resulting fronts, each
with |V | solutions, of the independent replicas, all jointly, to illustrate the shape of the resulting
front. The results are shown in Figure 11.

We can see in Figure 11 that the overlayed fronts of the greedy procedure (top row) have

in a sense a similar shape —a cloud-like form on the leftmost column, a line-like form on the

 343

middle column, and a vertical pillar on the right-hand side —but that in all cases the solutions
provided by the greedy procedure are on average reaching the same minimums than the random
procedure, but maintaining a wider front.

Figure 10: The Mycielski transformation graph. From the top: the front quality, the fill

percentage of the greedy procedure, the performance with the greedy procedure, and without it;
the thick lines show the average value of each objective function and the thin lines of the same

style indicate the respective minimum value.

 344

4. Conclusions and Future Woks

We have presented a novel quality measure for comparing solution subsets in
multiobjective optimization, specially suited for selecting a subset to present to a decision maker
or for incorporation in an iterative population-based optimization method that needs to prune out
a population from those examined in the previous iteration to be considered for the next iteration,
such as evolutionary algorithms. We have argued formally and demonstrated by experiments that
the proposed measure is efficiently computable, especially in terms of the number of objective
functions, and well-suited for evaluating multiple small subsets of very high dimensionality. We
have presented visualizations and experimental results to explain the function and the properties
of the proposed measure.

Figure 11: Overlays of 10 projected final fronts for the Mycielski transformation graph. On the

top row, the fronts produced by using the greedy procedure, and on the bottom row, those
resulting from the random fill.

In future work, we hope to study more combinations of the components of the suggested

measure, as well as adaptive parameter adjustment strategies for including problem-specific
weights. We also plan to experiment on randomized versions of the measure for extremely high
dimensions and for very large solution sets.

References

[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpää. The quickhull algorithm for convex

hulls. ACM Transactions on Mathematical Software (TOMS), 22(4), 1996.

 345

[2] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
Nashua, NH, USA, 1997.

[3] N. Beume. S-metric calculation by considering dominated hypervolume as Klee’s
measure problem. Evolutionary Computation, 17(4):477–492, 2009.

[4] S. Boyd and L. Vanderberghe. Convex optimization. Cambridge University Press,
Cambridge, UK, 2004.

[5] P. Cheng, J.-S. Pan, L. Li, Y. Tang, and C. Huang. A survey of performance assessment
for multiobjective optimizers. In Proceeding of the 2010 Fourth International Conference
on Genetic and Evolutionary Computing, Washington, DC, USA, 2010. IEEE Computer
Society.

[6] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary algorithms
for solving multiobjective problems. Genetic and evolutionary computation. Springer
Science+Business Media, 2007.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
McGraw-Hill Book Co., Boston, MA, USA, second edition, 2001.

[8] D.W. Corne, J. D. Knowles, andM. J. Oates. The Pareto Envelope-Based Selection
Algorithm for Multiobjective Optimization, volume 1917 of Lecture Notes in Computer
Science, pages 839–848. Springer-Verlag, Berlin/Heidelberg, Germany, 2000.

[9] K. Deb and S. Jain. Running performance metrics for evolutionary multi-objective
optimization. Technical Report Kangal Report No. 2002004, Kanpur Genetic Algorithms
Laboratory, Indian Institute of Technology Kanpur, Kanpur, India, 2002.

[10] K. Deb, Pawan, and A. Jain. Distributed computing of pareto-optimal solutions with
evolutionary algorithms. In Proceedings of the second international conference on
Evolutionary multi-criterion optimization, Berlin/Heidelberg, Germany, 2003. Springer-
Verlag.

[11] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, New York, NY, USA, 2000.

[12] C.M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

[13] J. Horn, N. Nafpliotis, and D. Goldberg. A niched Pareto genetic algorithm for
multiobjective optimization. In Proceedings of the First IEEE Conference on
Evolutionary Computation; IEEE World Congress on Computational Intelligence, pages
82–87. IEEE, 1994.

[14] G. K. Kao and S. H. Jacobson. Finding preferred subsets of pareto optimal solutions.
Computational optimization and applications, 40(1):73–95, 2008.

[15] I. Kim and O. de Weck. Adaptive weighted-sum method for bi-objective optimization:
Pareto front generation. Structural and multidisciplinary optimization, 29(2):149–158,
2005.

[16] R. Kumar and P. Rockett. Improved sampling of the Pareto-front in multiobjective
genetic optimizations by steady-state evolution: A Pareto converging genetic algorithm.
Evolutionary Computation, 10(3):283–314, 2002.

[17] M. Laumanns, G. Rudolph, and H.-P. Schwefel. Approximating the Pareto set: Concepts,
diversity issues, and performance assessment. Technical Report CI-72/99, University of
Dortmund, Collaborative Research Centre 531 Computational Intelligence, Dortmund,
Germany, 1999.

 346

[18] S.-Y. Liong, S.-T. Khu, and W.-T. Chan. Derivation of pareto front with genetic
algorithm and neural network. Journal of Hydrologic Engineering, 6(1):52–61, 2001.

[19] K. Miettinen. Nonlinear multiobjective optimization. Kluwer Academic Publishers,
Norwell, MA, USA, 1998.

[20] K. Parsopoulos and M. Vrahatis. Particle swarm optimization method in multiobjective
problems. In Proceedings of the 2002 ACM symposium on Applied computing, pages
603–607, New York, NY, USA, 2002. ACM.

[21] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm. Journal of
the ACM, 49(1), 2002.

[22] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of multiobjective optimization.
Academic Press, Orlando, FL, USA, 1985.

[23] J. R. Schott. Fault tolerant design using single and multicriteria genetic algorithm
optimization. PhD thesis, Draper Laboratory, Massachussetts Institute of Technology,
Cambridge, MA, USA, 1995. Master’s thesis.

[24] M. Trick. Graph coloring instances, 1996. http://mat.gsia.cmu.edu/COLOR/
instances.html.

[25] D. A. Van Veldhuizen. Multiobjective evolutionary algorithms: classiVcations, analyses,
and new innovations . PhD thesis, Air Force Institute of Technology, Wright Patterson
AFB, OH, USA, 1999.

[26] D. A. Van Veldhuizen and G. B. Lamont. Multiobjective evolutionary algorithms:
analyzing the state-of-the-art. Evolutionary computation, 8(2):125–147, 2000.

[27] R. Wenger. Randomized quickhull. Algorithmica, 17(3):322–329, 1997.
[28] L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.
[29] H. yunMeng, X. hua Zhang, and S. yang Liu. New quality measures for multiobjective

programming. In Advances in natural computation, volume 3611 of Lecture Notes in
Computer Science, pages 1044–1048. Springer-Verlag, Berlin/Heidelberg, Germany,
2005.

[30] S. Zeng, G. Chen, R. Wang, H. Li, H. Shi, L. Ding, and L. Kang. A new technique for
assessing the diversity of close-pareto-optimal front. In Proceedings of the IEEE World
Congress on Computational Intelligence, pages 344–349, 2008.

[31] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algorithms — a
comparative case study. In Proceedings of the Fifth International Conference on Parallel
Problem Solving from Nature, pages 292–304, London, UK, 1998. Springer-Verlag.

