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SUMMARY
We study the statistical properties of real-world grid workload logs and model some of the

essential measures as probability distributions for the purpose of artificially generating finite
workloads of arbitrary size for arbitrary grid configurations (in terms of node counts and

capacities) in such a way that the optimum in terms of total processing time is known for each
generated workload. This first version of the proposed generator assumes 100% occupancy,
which is something we hope to attend in future work. An implementation of the generator is
described and some experimental results are provided, as well as a small example on how to

employ the instances in evaluating the performance of a grid-scheduling algorithm.

1 Introduction

In grid scheduling, scalability and performance studies are crucial. One main difficulty when
performing these studies consists of generating problem instances that combine objectives:
first, having an instance that is highly similar to a real-world grid, and second, having sufficient
knowledge over this instance in order to accurately assess algorithm efficiency. To resolve this,
workload modeling (i.e., constructing a statistical model after a real workload trace) has been
employed. However, knowledge of lower or upper bounds that provide a clear reference to
how far from the optimum an algorithm actually is, would be desirable.

In this work, we focus on a problem instance generation process that combines modeling with
the assignment of a desired optimum for total processing time, thus permitting the creation of
realistic arbitrary-size scheduling problems for a given resource configuration and a known op-
timum. The aim is to provide greater control over the instance data, without having to sacrifice
the resemblance to a real workload.

We first model a workload, then create problem instances with known local optima from this
model, and finally experiment with the approach. For the modeling step, we analyze the prop-
erties of composed grid log files and propose a generation process that produces a job listing
that has a similar structure; to do this, we model the distributions of the requested and actual
run time, the CPU time requested, the number of CPUs requested and assigned, and the time
between job requests. We then formulate pseudo-random generators to match these distribu-
tions.

In order to generate workloads with known local optima, we propose a method based on gen-
eration of “blocks” that fill “buckets”. An arrival sequence can be obtained by “emptying” the



buckets. Additionally, as a proof of concept, we provide an example of how to use the instances
thus generated in evaluating the scalability and performance of scheduling algorithms using a
simple heuristic.

The rest of the paper is structured as follows: in Section 2 we provide a background and
briefly discuss existing work on the area, followed by grid trace analysis in 3. In Section 4 we
describe our proposed generator and provide some experimental results on it, and in Section 5
we conclude the present work and discuss opportunities for future research.

2 Background

The current section introduces grid terminology, overviews synthetic workload generation, and
briefly describes related approaches. A grid — according to the definition by Baker [1] —- is
“a type of parallel and distributed system that enables the sharing, selection, and aggregation of
geographically distributed autonomous and heterogeneous resources dynamically at runtime
depending on their availability, capability, performance, cost, and users’ quality-of-service
requirements.” In summary, grids can be compared to federations, where no centralized control
exists [9, 15].

Regarding to its components, a grid can be seen in terms of assignable work units, properties,
and executing entities. Atomic work units are called tasks, and several tasks compose a job;
a job exhibits several properties or parameters, such as arrival time, priority, and number of
processors required; according to these properties, the job is assigned or scheduled to a dif-
ferent number of resources in order to be executed; these resources may be grouped into an
autonomous site or node [5].

Because of unique features such as autonomy, heterogeneity, dynamic levels of node avail-
ability, and communication costs among nodes, grid scheduling is complex. Hence realistic
workload data is required for driving simulations where scheduling algorithms are tested, al-
though this is a difficult endeavor [10]. Two comparable techniques have been used (cf. [18]):
the first consists of using real production traces, which can be directly collected or searched in
repositories like the Parallel Workload Archive [8] and the Grid Workloads Archive [13]; the
second consists of generating synthetic workloads.

The use of statistics for workload generation is commonly known as workload modeling; the
goal is to produce a model that resembles — as closely as possible — the original workload.
The usual process [3] consists of

1. formulating the model and its parameters,

2. collecting data associated to the formulated parameters,

3. statistically analyzing the data (choosing parameter distributions, fitting data to these
distributions, sampling, etc.), and

4. evaluating the model.



Even though modeling is not trivial, it allows for a better understanding and control over the
cleaner than the actual trace.

Some approaches propose a specific methodology for developing the model (e.g. the semi-
nal work by Lublin and Feitelson [19] or the study by Downey and Feitelson [6]). Others
draw their attention towards certain parameters, such as arrival time [23], request time and job
cancellation [4], or task dependency [12]. Works that focus on proposing different means to
improve the modeling process can also be found [12, 22]. For a deeper insight on workload
modeling, please refer to the works by Calzarossa and Serazzi [3], Feitelson [7], and Li [15,
16, 17].

3 Properties of real-world grid loads

We analyzed the properties of composed grid log files, constructed by Tchernykh and González
[12]: one composed of a mixture of seven logs with 175,337 jobs and another with five logs
with a total of 512,060 jobs. For each job, the logs include the following data: job number
(an identifier), submit time (when the job arrives at queue), wait time (the amount of time the
job waits in queue), run time (the amount of calendar time the job is executed), number of
allocated processors, average CPU time used (total processor time used), used memory (the
amount of memory used by the job), requested number of processors (possibly different from
that allocated), requested time (possibly different from the real run time), requested memory
(possibly different from that used), status, an identifier of the user who submitted the job, an
identifier of the user group from which the job comes, executable (application) number, queue
number, partition number, preceding job number, as well as the think time from preceding job.

Our goal is to define a generation process that produces a job listing with a similar distri-
bution in three aspects: intervals between jobs, run time, and the degree of parallelism. The
analysis was performed for both log files independently. For purposes of a step towards re-
alistic workload generation, we analyze the following aspects: distribution of requested run
time (estimated duration), distribution of the actual run time (actual duration), distribution of
the CPU time requested (estimated CPU usage), distribution of the number of CPUs requested
(requested degree of parallelism), distribution of the number of CPUs assigned (actual degree
of parallelism), and distribution of time between job requests (arrival intervals).

In the analysis, we omitted those jobs that did not have a defined value in the log. Figures 1
and 2 show these distributions in the form of histograms, the former for the smaller log and the
latter for the larger log. The distributions show a heavy tail, which indicates that basing any
mathematical models on them should be done with logarithmic binning to balance the number
of samples per discretization step.

The requested and allocated CPU counts behave very similarly to each other, which allows us
to model only one of them: we examined the correlations between the requested and assigned
quantities. Figure 4 shows the scatter plots for the two correlations, using only one percent of
the points to keep the image size reasonable1. Two outliers are not shown on the graphic: one
with small requested run time and more than 400,000 seconds in actual run time and another

1The graphics for the correlation require 14 MB when all points are included for the larger log file alone.
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Figure 1: Distributions of five properties in the smaller seven-log combination; the inset the
same data on logarithmic scale.
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Figure 2: Distributions of five properties in the larger five-log combination; the inset the same
data on logarithmic scale.
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Figure 3: On the left, the five-log data, and on the right, the seven-log data. The upper plots are
the histograms of the ratio over the combined log for each case, whereas the lower plot shows
the histogram on log-log scale and a curve fitted to it.

with more than 60,000,000 seconds in requested but zero actual. These values were, however,
kept along for the correlation computation.

The correlations were very high for the CPU counts: 0.995 for the seven-log combination and
0.987 for the five-log combination. This lets us focus on only the assigned CPU count, as the
requested number provides no vital additional information. However, the situation is different
for the run time: the actual time turns out to be, in general, a value that is distributed between
the requested time and zero.

For modeling of the relation between the requested and actual run time, we computed for
each job the ratio of requested to actual run time. Figure 3 shows the resulting histograms
when using the ratio instead of the value itself, as well as lines fitted on log-log plots of these
histograms. We also attempted the fitting of a second-degree polynomial and a cutoff linear
fit, but the improvements in this particular case were not significant. The linear fits are given
by log(y) = −0.74 log(x) + 7.23 in the five-log case and by log(y) = −0.66 log(x) + 5.92 in
the seven-log case. This allows us to model one of these measures (either the requested or the
actual run time) in terms of the other, as the ratio between the two is reasonably well-behaved.

In Figures 5 and 6 shows the exponentially-growing step-size histograms obtained by logarith-
mic binning on base 2 for the seven- and the five-log sets, respectively. In each of the plots, we
fitted a second-degree polynomial

Y = aX2 + bX + c (1)

of the logarithms (Y,X) of the (x, y) pairs iteratively minimizing the sum-of-squares of resid-
uals in Gnuplot; the resulting fit is drawn in each plot; this yields for the original scale

y = 2cxb+a log2 x. (2)

Most of these fits are good, although not perfect, but for our purposes the simplicity of the
model is an important consideration, as our goal is to artificially reproduce these quantities.

Table 1 shows the values for a, b, and c for the four distributions that we chose to model
together with the quality of fit calculated as the R2 measure for the goodness of fit; for the
table we used the R project statistical tools [2]; the fits agree with those produced by Gnuplot
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Figure 4: Correlations between the requested and actual quantities for the CPU count (on the
left) and the run time (on the right); the upper row shows the values for the smaller seven log
combination and the lower row for the larger five log combination.
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Figure 5: Logarithmic binning and a second-degree polynomial fit for the seven-log data set.
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Figure 6: Logarithmic binning and a second-degree polynomial fit for the five-log data set.

[14] in the figures. The requested CPU count will be assumed to coincide with the allocated,
due to the high correlation observed, and the actual runtime will be modelled in terms of the
requested run time. We also included linear fits in the table, but it is evident from the R2

statistics that the quadratic fits are superior in quality.

Now, each of these distributions needs to be converted into a pseudo-random number genera-
tor. We use the quadratic functions as stand-in functions for our desired probability distribution
functions (PDF), integrate each of these functions to obtain a corresponding cumulative distri-
bution function (CDF), cut this curve off at the positive root of the PDF, and the normalize by
making this cutoff y-value of the CDF equal to one. We can ignore the integration constant as
for a CDF the value at zero is always equal to zero. The roots and the integrals were computed
with Wolfram Alpha. The left cutoff, where the final, normalized CDF needs to be equal to
one, corresponds to the local maximum of the CDF, located at the computed root of the PDF.
The shape of these CDF and their inverse functions is like that shown in the example of in
Figure 7. The values involved are given in Table 2; we do not actually need to compute the
inverse (which can be done, but the function is not very clean and involves quantities with an
impractical magnitude for computation) — we will resort to sampling, as explained below.

We first generate uniformly at random in [0, 1] a value Z and compute Y = 2Z − 1 where
Y ∈ [0, 1] but no longer uniformly distributed; this is for translating us back from logarithmic
to linear scale. Then, we generate uniformly at random in [0, ρ] a set ofR, |R| = r, independent
trial values xi; here ρ is the root (cf. Table 2). We compute for each trial using the normalized
CDF ax3 + bx2 + c the corresponding yi as

yi =
F (x)

F (ρ)
, (3)



Table 1: The parameters of the fitted second- and first-degree polynomials y = ax2 + bx + c
and y = αx+β for the four distributions that need to be modelled for artificial log generation,
together with the goodness of each fit. The first rows show the values for the smaller seven-log
set, whereas the latter rows contain those of the five-log set.

Quantity Set a b c R2
quad α β R2

lin
Requested run time 7 −0.09 2.16 1.12 0.82 0.40 6.67 0.34

CPU time used 7 −0.05 0.77 11.4 0.66 −0.26 14.5 0.30
Allocated CPU count 7 −0.15 1.16 12.3 0.88 −0.49 15.1 0.47
Interval between jobs 7 −0.15 1.49 11.5 0.90 −0.49 15.5 0.40

Requested run time 5 −0.07 1.80 2.65 0.64 0.08 9.62 0.01
CPU time used 5 −0.04 0.30 13.7 0.64 −0.37 15.7 0.52

Allocated CPU count 5 −0.18 0.62 16.2 0.87 −1.20 19.0 0.74
Interval between jobs 5 −0.13 0.89 15.0 0.91 −0.81 18.3 0.69
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Figure 7: A cubic function −x3 + x2 + x + 1 (plotted in green) and its inverse (plotted in
blue). For generation purposes, we only require the part corresponding to the first quadrant of
the cubic, drawn in purple for both the cubic and the inverse curve. The local maximum of the
cubic curve and its corresponding point on the inverse are marked with red squares; it is the
cutoff point after which the curve is no longer required as the CDF peaks there.

Table 2: The quadratic PDF, its positive root, the cubic CDF and its peak value (at the root) in
the log-log domain. All values are rounded, both in representation and in use, as the generation
in itself is approximate to begin with. Note the deliberate heavy rounding.

Quantity Set Quadratic PDF Root Cubic CDF Peak
Req. run time 7 −0.09x2 + 2.16x+ 1.12 24.51 −0.03x3 + 1.08x2 + 1.12x 234.53

CPU time used 7 −0.05x2 + 0.77x+ 11.4 24.65 −0.01x3 + 0.39x2 + 11.4x 368.20
All. CPU count 7 −0.15x2 + 1.16x+ 12.3 13.71 −0.05x3 + 0.58x2 + 12.3x 148.80
Int. betw. jobs 7 −0.15x2 + 1.49x+ 11.5 15.03 −0.05x3 + 0.75x2 + 11.5x 172.51

Req. run time 5 −0.07x2 + 1.80x+ 2.65 27.11 −0.02x3 + 0.90x2 + 2.65x 334.81
CPU time used 5 −0.04x2 + 0.30x+ 13.7 22.63 −0.01x3 + 0.15x2 + 13.7x 270.96
All. CPU count 5 −0.18x2 + 0.62x+ 16.2 11.36 −0.06x3 + 0.31x2 + 16.2x 136.08
Int. betw. jobs 5 −0.13x2 + 0.98x+ 15.0 15.15 −0.04x3 + 0.49x2 + 15.0x 200.63
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Figure 8: An experimentally obtained CDF (that is, a normalized accumulative histogram over
10, 000 pseudo-random numbers generated as described from the data in Table 2; drawn with
dots), together with the with the corresponding analytical CDF, individually for each the eight
distributions modeled.

where
F (x) = xc+b log2 x+a(log2 x)

2 − 1 (4)

is a linear-domain version of the cubic CDF, translated to yield zero at x = 1. Note that
yi ∈ [0, 1] necessarily when x ∈ [1, 2ρ] Among these r trials, we choose that xi that generated
the value f(xi) = yi nearest to Y :

x∗ = arg min
xi∈R
{|f(xi)− Y |}. (5)

and use X = 2x
∗ as the desired linear pseudo-random number. In our experiments, we use

r = 100 for efficiency (larger values provide higher precision for the model).

An example of the outcome of the described generator is given in Figure 8 that shows log-
binned histograms corresponding to numbers that were generated for the modeled distributions
of the seven- and five-log data sets. It is evident from the figure that the shape of the distribution
is adequately captured, for our purposes, by this simple formulation. It is easy to see that mostly
the distribution is captured quite well regardless of the decimals lost in rounding, although the
quick-and-dirty inversion sampling together with the heavy rounding does result in moderate
over-estimation of the requested runtimes on the lower end. For our purposes, this generation
is quite adequate. We leave the improvement of precision in modelling these distributions to
further work.

4 Generation of instances with known optima

In order to generate workloads with known local optima, we propose a method based on ran-
dom generation “blocks” that fill “buckets” in two dimensions. Each block corresponds to a
job, the block width being the degree of parallelism, that is, the number of CPUs it occupies,
and the block height being the job run time in some arbitrary but fixed time units. Figure 9
shows an example with a single bucket, filled with blocks.



Figure 9: A single bucket with total width of ten units and total height also of ten units. There
are several blocks, the smallest being one by one in size and the largest one having width and
height both equal to three.

Figure 10: A workload generated with the simplistic Bernoulli filling for a grid that has three
nodes with five CPUs, four nodes with three, two with two, and one with 20 CPUs. The opti-
mum was set to 15 time units.

Each node of a grid corresponds to a bucket, with the bucket width being the number of CPUs
available in the node. The height of all buckets is given as a parameter and will be the number
of time units required by the optimal solution, as the buckets will all be filled with blocks.
The number of nodes of each size is also given as a configuration file to the generator. Figure
10 shows an example. For the bucket-block visualizations in the paper we output figures in
FIG 3.2 format [21] of XFig and then use the included fig2dev tool to convert them to
Encapsulated PostScript.

In a simplistic scenario, the blocks can be generated simply by choosing “cells” within the
bucket uniformly at random and then ”growing” a job at that position by letting both the job
width and the job height expand as a Bernoulli process, thus yielding a geometric distribution
independently to both the width and the height of the block. Then, an arrival sequence can be
obtained by “emptying” the buckets from the top blocks downwards, only allowing a job to be
retracted when there is no other block completely or partially on top of it. This is illustrated in
Figure 10.

However, this is all very artificial and there is no guarantee that the resulting workload be
somehow reminiscent of real-world scenarios. This is where the models drawn form the log
data in the previous section becomes highly useful. We can use the estimated probability distri-
butions to first generate the block sizes and then to guide the order in which a timing sequence
is constructed, and also in generating the intervals between job arrivals.

We hence propose the generation of artificial problem instances, that is, job sequences with
size requests (defining the CPU count and run time), where each job has a defined arrival time
(in terms of time units that pass after the previous job) and where these size and time measures
are generated based on the statistics of real job logs, but with the freedom to generate multiple
independent instances with an arbitrary number of jobs each. We leave to future work separat-



Figure 11: A workload generated with the workload-based filling for a grid that has three nodes
with three CPUs: two with 10, one with 20, and one with 40 CPUs. The optimum was set to
20 time units.

ing the requested quantity from the actual one, allowing the algorithm only the requested value
at time of job assignment and then revealing the actual value as the job begins execution; the
previous sections already report the modelling aspects required to achieve this, but we leave it
out for brevity of the presentation in this first work.

4.1 Proposed generator

The generation models takes the following parameters:

1. the model for job duration — we model this in terms of the CPU time used,

2. the model for degree of parallelism — we model this in terms of the requested CPU
count,

3. the model for inter-arrival time,

4. the desired optimum for the total duration D, and

5. a grid configuration, given as node sets. Each node set is represented as a list of pairs
(n, d) where n is the number of nodes and d is the number of CPUs per node.

Note that instead of using the CPU time duration, we could use the actual run time. As we
know from the results reported in the previous section, the measures of the models involved
follow power-law distributions, we now expect more variability in block sizes, as shown in
Figure 11.

When generating the degree of parallelism, job duration or arrival delay, we round up to the
next integer value for purposes of the boxing model used; for the core count this is obviously
always so, whereas in grid computing individual jobs that take less than one second to complete
are not efficient anyhow due to the communication overhead in real-world grid systems.

The generation proceeds in the following manner: buckets are created with the widths and mul-
tiplicities defined in the configuration file and the height determined by the optimum. Then the
buckets are filled completely with jobs that are created one by one using the statistical param-
eters and are fitted on a greedy first-fit bases onto the buckets. If the distribution suggests a



duration greater than the optimum, the job duration is cut down to the exact optimum; simi-
larly, if the degree of parallelism generated exceeds the maximum of the nodes present, it is
equally cut down to that maximum value. This is to ensure that all generated jobs could at least
hypothetically be included in the scheduling.

The greedy fit attempts from the lowest level of a bucket upwards, seeking a feasible initial
position left to right, considering the buckets in random order on each round. When a job does
not fit, it is not rejected, but instead cut down (choosing uniformly at random whether to reduce
the duration or the degree of parallelism to one half of the present value, not letting either
one hit zero) and retried until a place is found (cropping again as many times as necessary).
The cropping is done in such drastic steps to ensure that the number of retried is logarithmic
instead of linear of the maximum block dimension. The bias introduced by this reduction step
is discussed in the next section in conjunction with the experiments. This cropping mechanism
is rather slow at present; we hope to explore faster accommodation mechanisms in future work.

The arrival-sequence generation in this first version of our proposed generator functions as
follows. An arrival time is assigned to each job, using the beginning of its execution in the
generated optimal scheduling as a deadline for the job arrival, drawing the intervals between
two consecutive jobs from the modelled distribution whenever the deadlines permit doing so.
All jobs that initiate their execution at the beginning of the optimal scheduling must arrive
at time zero; however, also other jobs may already arrive at time zero as well, although their
optimal execution (in terms of the total throughput) initiates at a later time. The selection
of which jobs arrive at what time is done by attempting to generate an arrival interval from
the modelled distribution, filtering out the jobs that would make it, and then choosing one at
random. If none fulfill, the interval is decremented by one unit and tried again.

4.2 Experimental results

We implemented the instance generator in Python 2.7 [20] and generated a set of 30 instances
with three different optimums: 50, 150, and 450. All the generated instances share the follow-
ing grid configuration: 32 nodes with four cores, 16 nodes with eight cores, 8 nodes with 16
cores, four nodes with 32 cores, two nodes with 64 cores, and one node with 128 cores. The
beauty in the generation models being power-law shaped is that they are nearly scale-invariant:
making smaller or bigger nodes and elevating or decreasing the optimum value does not alter
the qualitative statistical properties of the instance. We used the parameters of the seven-log
data set as input to the generator.

All of the reported experiments were ran in a single thread on a Mac Mini with an Intel 2.40
GHz Core 2 Duo processor with just 2 GB of RAM non-exclusively (the machine doubles as
a web server, among other duties) under OS X 10.7.2 (Lion).

The box-fitting heuristic of this first version of the generator is somewhat slow; the average
generation time over the set of 30 instances was a little over five minutes for those with op-
timum at 50, almost fifty minutes for those with optimum at 150, and almost seven hours for
those with optimum at 450. The number of jobs generated per log grew non-linearly with the
optimum increase when keeping the same configuration, as expected: the 50-optimum logs
had a little more than 400 jobs each, the 150-optimum logs has approximately 460 jobs each,
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Figure 12: The three distributions — duration (left), parallelism (middle), and arrival inter-
vals (right) — for a 50-optimum log with 449 jobs (top row), a 150-optimum log with 433
jobs (middle row), and a 450-optimum log with 507 jobs (bottom row). All three logs were
generated using the parameters modelled from the seven-log real workload and the grid con-
figuration described above.

and the 450-optimum logs nearly 540; higher optimums allow for longer-executing jobs from
the runtime distribution.

We computed the distributions of the job duration, job parallelism, and the intervals between
jobs in the generated log files. For brevity, we include here those of a single log for each value
of optimum used; these are shown in Figure 12. The inset in each figure shows the log-log
scale histogram obtained with logarithmic binning, whereas the figure itself is a linear-scale
histogram.

For illustrating how these generated instances could be employed, we also implemented in
Java [11] a fast first-fit deterministic heuristic based on assigning penalties on empty slots on
low levels that reads the generated job listing online, obtaining one job at a time and assigning
it to a processor. The heuristic can be ran both in visual and batch mode. We emphasize that
the heuristic was not meant to compete with state of the art in any way — it is very fast (a
couple of seconds at most with visualization included for small instances) and sketched rather
than designed and only implemented as a proof of concept of how to use the instances from
the proposed generator. Figure 13 shows a screen shot of the heuristic on a small instance.



Figure 13: A screen shot of the Java implementation of a simple deterministic heuristic operat-
ing on a generated log instance (16 nodes with four cores, eight with eight, and four with 16).
The red bar indicates the optimum, the value of which is included in the generated log file.
In this case, the optimum was 80 time units and the heuristic solution requires 110 time units,
corresponding to 1.375 times the optimum.

5 Conclusions and further work

We have proposed a generator of instances for grid scheduling where the sizes of the jobs,
both in terms of duration and CPU count, are modeled on real-world data, and where the
optimum is known. We base the parameters of the generator in careful statistical analysis
and curve-fitting. We provide experimental results on both the model and the function of the
proposed generator, as well as an anecdotal proof-of-concept heuristic to illustrate the use of
the proposed generator.

The present version of the proposed generator assumes a non-realistic 100% occupancy rate of
the grid cores, which we plan to relax in future work. Also, it is of interest to apply data clus-
tering techniques to the real-world instances before the statistical analysis in order to identify
user groups, each with a distinct internal behavior, and then model the job flow from each user
group independently instead of treating the job generation as a single random process.

Also dependencies between past and future jobs are of interest for further realism in the gener-
ated workloads; presently each job is generated independently from the previous ones, with the
exception of the optional filler jobs that are inserted to guarantee an exact optimum, whereas
the real workloads new jobs are often follow-up tasks for previous jobs and their arrival time
and size may depend on the preceding jobs.
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