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SCALABLE UNIFORM GRAPH SAMPLING BY LOCAL
COMPUTATION∗
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Abstract. We address the problem of obtaining by local computation a sample of a graph such
that the vertices are sampled uniformly. The presented solution uses a Markov chain to combine a
rapidly mixing random walk that does not reach a uniform distribution with a slow-mixing walk that
does. The resulting chain mixes at a notably faster rate than the standard uniform random walk
and can be simulated exactly using only local information.
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1. Introduction. Random sampling is a powerful tool in the construction of
efficient algorithms for demanding computational problems [12, 13, 26, 34, 35]. Sam-
pling methods are useful, for example, in lossy data compression [4]. They also help
us to analyze and understand properties of large combinatorial objects.

The order and complexity of systems studied by computational science, such as
communication networks and genomic data, increase, and often the size of the data
sets available surpass the limits of scalability of existing tools for analyzing them.
Sampling provides a way to analyze properties of data sets that are too large to
process as is: with a sampling method, one obtains a subset of the data that should
be representative of the whole data set, but of much smaller order.

In the case of graphs, obtaining a subset of vertices can be helpful in estimating the
structural properties of a network. For example, calculating the average path length
is computationally demanding for a large graph, but computing a set of shortest
paths among a smaller set of vertices can be done to obtain an estimate of the global
average. The caveat is making sure that the sample is not distorted, i.e., that it
actually reflects the properties of the source data from which it was obtained. A good
example of using a uniform random sample to estimate an important graph property,
namely, the betweenness centrality (cf. [15, 28]) is the algorithm of Eppstein and
Wong [22]; another related work is that of Newman [42], which is based on random
walks.

This is the fundamental question of sampling: How do we select the subset to
examine so that the estimates obtained reflect the global properties of the graph as
faithfully as possible, while keeping the size of the sample needed relatively small?

∗Received by the editors February 19, 2008; accepted for publication (in revised form) July 16,
2010; published electronically September 29, 2010. The author was supported by SEP-PROMEP of
Mexico under grants 103,5/07/2523 and 103,5/08/4804. The early stages of this work were done in
collaboration with Pekka Orponen at Helsinki University of Technology (TKK) under grant 206235
(ANNE 2003–2006) of the Academy of Finland, and parts of that work have been reported in the
doctoral dissertation of the author [47]. An early version of this work was submitted to the arXiv.org
e-Print archive as a part of a two-topic work [43].

http://www.siam.org/journals/sisc/32-5/71608.html
†Center for Innovation, Research, and Development in Engineering and Technology (CIIDIT)

& Department of Electrical and Mechanical Engineering (FIME), Universidad Autónoma de Nuevo
León (UANL), Av. Universidad s/n, Cd. Universitaria, San Nicolás de los Garza, N.L. 66450, Mexico
(elisa.schaeffer@uanl.edu.mx).

2937



2938 SATU ELISA SCHAEFFER

It is often practical to assume that if a sample of a graph reflects some commonly
used structural properties, such as the clustering coefficient, average path length, and
degree distribution (cf. [20]), then it can also be used to estimate other properties,
although counterexamples of samples that preserve certain properties while losing
others are easy to construct. Repeating the sampling and using more than one sam-
pling method can be employed to improve the reliability of the observations made.
The need for repetitions, however, makes it even more important that the sampling
procedure does not consume much computation or memory.

Typically, what one aims for is a sample that include all vertices of the graph
with the same probability, regardless of their degrees. Such sampling is called uniform
sampling of the graph. If the number of vertices, together with an ordering on the
vertex set, are known, it is trivial to obtain a uniform random sample by simply
taking the list of vertices and picking numbers from [1, 2, . . . , n] uniformly at random
to select the sample.

However, some graphs of interest are massive, rapidly changing, or in other aspects
infeasible for obtaining global snapshots or calculating the exact vertex count. In order
to uniformly sample such a graph, local computation offers a scalable approach: the
order of the graph should not affect the sampling procedure. The graph structure
should be explored progressively without needing to read large portions of the graph
into main memory, preferably without needing access to all of the graph at any time.

In this paper we concentrate on sampling undirected, unweighted graphs. Exten-
sions to weighted and directed cases are left to future work; such methods are of great
interest and are necessary for numerous applications, such as sampling the Web graph
[8, 36], which is a directed graph representing the pages and hyperlinks on the World
Wide Web. On the other hand, bioinformatics applications often involve weighted
graphs [32, 51, 56].

The rest of the paper is organized as follows. First, in section 2, we establish the
notation and terminology necessary throughout the paper. In section 3, we review
some of the related work. Then we proceed to define Markov chains for graph sampling
in section 4. After presenting the constructions and their formal proofs, we explain
the implementation and the experimental evaluation in section 5, and then conclude
the work in section 6.

2. Background. In order to discuss sampling in mathematical terms, basic
knowledge of stochastic processes is necessary, especially regarding discrete-time pro-
cesses operating in a discrete state space. For readers unfamiliar with the fundamen-
tals of the topic, we recommend a comprehensive text book, such as that of Grimmett
and Stirzaker [29].

Let G = (V,E) be an undirected, unweighted connected graph. Let v, w ∈ V
be vertices of the graph and E the set of undirected edges. We often enumerate the
vertices notationally as in V = {v1, v2, . . . , vn} and associate the vertex vi with its
index i. If (v, w) ∈ E, we say that the two vertices are neighbors. The degree of a
vertex is the number of neighbors it has. The essential graph-theoretical notation we
use is summarized in Table 1.

Let the vertex set V be the state space of a discrete, time-homogeneous Markov
chain with time steps t = 0, 1, 2, . . . . As the graph is connected and undirected, defin-
ing the transition probabilities pv,w as being strictly positive for each edge (v, w) ∈ E
(and zero elsewhere), the resulting chain is irreducible and all the states are positive
recurrent. Hence, the chain necessarily has one or more stationary distributions πs

to which the chain converges into a stationary distribution. The stationary distri-
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Table 1

Notation used in this paper.

G = (V, E) undirected, unweighted connected graph
V set of vertices
E set of edges
n number of vertices, |V |
m number of edges, |E|

Γ(v) set of neighbors of v ∈ V
deg(v) degree of vertex v, |Γ(v)|

bution of a Markov chain that is both irreducible and aperiodic is unique (that is,
independent of the initial distribution); such chains are called ergodic.

For an irreducible Markov chain that has only positive recurrent states, there
exists a reversed chain. Denoting the irreducible positive recurrent Markov chain by
M = {M� : � ∈ 1, 2, . . . , t}, the reversed chain is Mrev

� = Mt−�. The transition
probabilities of the reversed chain are

(2.1) Pr[Mrev
t+1 = w | Mrev

t = v] =
πs(w)

πs(v)
· pw,v,

in terms of the transition probabilities and the stationary distribution of the original
chain M.

The detailed balance conditions

(2.2) ∀v, w ∈ V : πs(v) · pv,w = πs(w) · pw,v

hold for a stationary distribution of a reversible Markov chain. Also, irreversible
chains can have stationary distributions, although the detailed balance conditions do
not hold. Reversibility of a chain M implies that the two chains M and Mrev are
statistically indistinguishable at equilibrium.

The number of steps it takes a given Markov chain started with an arbitrary
initial distribution to converge to the stationary distribution is of special interest; it
is called the mixing time Φε of the chain and is defined, in terms of a parameter ε > 0,
as the earliest time step after which D(π, πs) ≤ ε holds for all future time steps, where

(2.3) D(π1, π2) =
1

2

∑
v∈V

|π1(v)− π2(v)|

is the total variation distance (TVD) between two distributions π1 and π2. In rough
terms, if the chain reaches stationary distribution in a number of steps that is poly-
nomial in the input size (i.e., order of the state space) and also polynomial in 1

ε , the
process is said to be rapidly mixing.

The eigenvalue spectrum of the transition matrix can be used to evaluate the
mixing time of the chain. The primary eigenvalue λ1 of a stochastic matrix is
one. The Perron–Frobenius theorem [29] states that for the nonprincipal eigenval-
ues, |λi| ≤ λ1 = 1. If the eigenvalue one has a multiplicity greater than one or there
are complex roots that lie on the unit circle, the chain is reducible and has more
stationary distributions.

As any vector, including the initial distribution, can be represented as an eigen-
value decomposition in the vector space determined by the eigenvectors, and all λi

other than those corresponding to stationary distributions have absolute value smaller
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than one, the corresponding components get smaller and smaller as the chain is run.
This implies that the smaller the eigenvalues λi are, the faster the chain converges to
the stationary distribution [33]. In particular, knowing the second eigenvalue λ2 (in
decreasing order of absolute value) allows us to characterize the mixing time as

(2.4) O
(

log(n)

1− |λ2|
)
,

which shows that the smaller the second eigenvalue is, the faster the chain will mix
[49]. For more information on mixing times, we recommend the books by Behrends
[6] and Sinclair [50].

3. Related work. As a first approach to sampling a graph, one would consider
picking any vertex of the graph and performing a random walk from that initial vertex:
in each step, a neighbor of the current vertex is chosen to be the next vertex. After
a sufficient number of steps, one would expect to have wandered sufficiently far from
the initial vertex to claim to be at a “randomly chosen” vertex. This random walk is
known as the regular random walk (also called simple or blind random walk).

Note that for general graphs, this chain does not converge to a uniform stationary
distribution, although there are special cases where it does, such as degree-regular
graphs (where the distribution is evidently uniform, as all the degrees are equal) and
expander graphs (where the distribution is a constant factor away from being uniform
[27]). Also note that, whereas all chains corresponding to regular random walks on
connected undirected graphs are irreducible Markov chains, they may well be periodic,
for which the general case may not converge to a unique stationary distribution.

As an example of a large undirected graph, we mention the Internet. In 1997,
Paxson and Floyd [46] identified the difficulty in characterizing Internet topology
and attributed it to the constant change and growth of the network. Their research
on Internet simulation is motivated by the possibility of approaching “complicated
scenarios that would be either difficult or impossible to analyze” [46]. In 2003, Floyd
and Kohler [25] discussed the need for better models of the Internet. Now, several
years later, the size of the network is already significantly bigger and the problems
related to its topology are urgent. Innovative and adaptive routing protocols are
needed for the ever-growing amount of traffic and the imbalance of the routing load—
much of the traffic flows along a few prevalent routes instead of spreading throughout
the available infrastructure [45], the configuration of the routers is complex [24], and
the current solutions are not considered sufficiently scalable [37]. Due to these research
challenges, characterizing and estimating the structural properties is of great interest.

Krishnamurthy et al. [38] discuss sampling of the Internet, with an emphasis on
how small a sample can be and still be useful and informative. It would be helpful
to be able to predict the future evolution of the network in order to design better
hardware, traffic protocols, and routing algorithms [23, 54]. For a broader discussion
of modeling the Internet as well as the World Wide Web, we recommend the book by
Baldi, Frasconi, and Smythe [3].

Returning to the theme of random walks, as the random regular walk follows any
edge outward from the current vertex with equal probability, the stationary distribu-
tion favors vertices of high degree, and hence any sampling done by a regular random
walk will be skewed towards the hubs1 of a nonuniform network. The measurements

1A hub is a vertex with a particularly high degree in comparison to the average degree of the
graph.



SCALABLE UNIFORM GRAPH SAMPLING 2941

made on the degree distribution of the Internet suffered from a similar bias, although
instead of sampling single vertices, shortest paths between pairs were sampled [14].
Achlioptas et al. [2] show that such path-based sampling can make even a Poissonian
degree distribution seem scale-free, as well as a uniform distribution (i.e., a regular
graph). An analysis on what causes such a bias is provided by Dall’Asta et al. [16].

The case of vertex sampling is, however, resolvable. There are several options
available for enhancing the regular random walk to obtain a uniform sample over
vertex degrees. A relatively simple method is to apply rejection sampling, accepting
a sample with a probability proportional to the inverse of the degree of the sampled
vertex [52]. Possible problems include the difficulty of estimating the proportion
of acceptable samples in the set of samples obtained, and hence uncertainty of the
running time of the method for a given number of samples needed. Also there are
some mathematical constraints on when such a construction is feasible [11].

Another possibility is to add a sufficient number of reflexive edges to each vertex
that does not have the maximum degree D and create a modified multigraph G′ that
is regular with the maximum degree of the original graph [18]. This means that each
vertex v ∈ V of the original graph G is included in G′, but with D−deg(v) (directed)
self-loops included in the edge set in addition to the original edges in E. As each
vertex in G′ has the same degree, they all have equal probability in the distribution of
equation (4.2) for the modified graph G′. Intuitively, such a walk on G′ will stall on
an originally low-degree vertex for a long time, whereas it passes through high-degree
vertices much more quickly.

While simulating such a walk, considering all the self-loops separately can be
avoided by making following observation: a self-loop will be chosen with probability

(3.1) q =
D − deg(v)

D
,

which enables the algorithm to “flip a coin” to determine whether to stay in the same
state or to take an outbound transition. This is essentially a Bernoulli trial with
success probability q′ = 1 − q, where success is interpreted as choosing to follow a
transition that leaves the current state. This observation enables us to avoid actually
having to construct G′ with such a large number of edges, as the expected number of
Bernoulli trials before a success is geometrically distributed with parameter q′. Hence
one simply needs to draw a geometrically distributed random number to obtain the
number of steps that the chain should stall at that state, and then continue with the
transition probabilities of the regular random walk on the original graph G. We call
this construction, which uses the geometrically distributed random variable to sample
the graph, the coin-flip random walk.

In this paper, we propose a combination of two random walks into a single Markov
chain: we combine the regular random walk with another that converges to the uni-
form distribution, and then we sample from the chain at specific times to ensure a
uniform sample. The construction will be explained in detail in the next section.

A walk-combination approach similar to ours has been taken by Wei, Erenrich,
and Selman [55] in sampling satisfiable evaluations for a SAT (satisfiability) instance.
They use a random walk mixed with the Walk-SAT [48] algorithm2 to obtain a near-
uniform sample of satisfiable truth assignments, whereas using Walk-SAT alone would

2Walk-SAT is a popular satisfiability solver introduced in mid-1990s, i.e., an algorithm to find
satisfying truth assignments for the variables of a logical formula.
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result in a nonuniform sample. We expect our combined chain to provide a starting
point for similar constructions.

Also Datta and Kargupta [17] use Markov chains to obtain uniform samples of
peer-to-peer (P2P) networks. The P2P networks are represented as undirected graphs,
where the vertices represent the data rather than the peers. The structure of such
systems coincides with the so-called power-law graphs that naturally permit a rapid
mixing [40]. Our construction differs from the work of Datta and Kargupta in the sense
that our approach can be applied to improve the mixing towards also other stationary
distributions and not just the uniform distribution—by changing the sampling side
probabilities and appropriately adjusting the side-switching probabilities to fulfill the
detailed balance conditions, a different distribution is achieved.

4. Markov chain constructions. In this section we define the three random
walks discussed in this paper and derive the stationary distribution of each chain.

4.1. Regular random walk. Formally, a regular random walk on a graph is a
Markov chain in which the transition probabilities out of a vertex are uniform:

(4.1) pv,w =

⎧⎨
⎩

1

deg(v)
, w ∈ Γ(v),

0 otherwise.

The stationary distribution of such a chain is

(4.2) πr = (πr(v1), . . . , πr(vn)) =

(
deg(v1)

2m
, . . . ,

deg(vn)

2m

)
,

as 2m is the total number of edge endpoints in G. The distribution of (4.2) can be
shown to be a stationary distribution by studying the detailed balance conditions in
equilibrium, as their validity implies stationarity for a distribution:

(4.3)
πr(v) · pv,w = πr(w) · pw,v,

deg(v)

2m
· 1

deg(v)
=

deg(w)

2m
· 1

deg(w)
.

As the equality holds, global equilibrium follows from the local equilibrium of the
detailed balance conditions, and the distribution is stationary.

4.2. Balanced random walk. One can also define a Markov chain that has
the uniform distribution as the stationary distribution. This is achieved by choosing
transition probabilities [7]:

(4.4) pv,w =

⎧⎪⎪⎨
⎪⎪⎩

min
{

1
deg(v) ,

1
deg(w)

}
if w ∈ Γ(v),

1−∑
w∈Γ(v) min

{
1

deg(v) ,
1

deg(w)

}
if w = v,

0 otherwise.

We call this the balanced random walk.3 Note that the transition matrix is symmetric
and hence doubly stochastic. Another noteworthy property is that the presence of

3A simpler version with these same properties is to use pv,w = (deg(v) · deg(w))−1 for w ∈ Γ(v),
zero for nonneighbors, and the rest on a self-loop, but the self-loop probability often turns out to be
impractically large and slows down the mixing of the walk.
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just one nonzero diagonal term suffices to guarantee that the walk is aperiodic, given
that the graph is connected.

Due to symmetry with respect to v and w, detailed balance trivially holds also
for this definition with the uniform distribution as the stationary distribution:

(4.5)
1

n
min

{
1

deg(v)
,

1

deg(w)

}
=

1

n
min

{
1

deg(w)
,

1

deg(v)

}
.

The self-loop probability pv,v can be rewritten in a simpler form: if deg(v) ≥
deg(w), the subtracted term is always deg(v)−1. Otherwise, the subtraction is smaller
by deg(v)−1 − deg(w)−1. Hence, if we sum over w ∈ Γ(v), the self-loop probability is
the sum of these leftovers. Using deg(v) = |Γ(v)|, we obtain

(4.6)

pv,v = 1−
∑

w∈Γ(v)

min

{
1

deg(v)
,

1

deg(w)

}

=
∑

w∈Γ(v)

(
1

deg(v)
−min

{
1

deg(v)
,

1

deg(w)

})

=
∑

w∈Γ(v)

max

{
1

deg(v)
− 1

deg(v)
,

1

deg(v)
− 1

deg(w)

}

=
∑

w∈Γ(v)

max

{
0,

1

deg(v)
− 1

deg(w)

}
.

Intuitively, a walk that visits the hubs of a nonuniform network can quickly reach
any part of the network. Continuing that line of thought, chains such as this balanced
walk that avoid visiting hubs take a longer time to cover the whole graph. Hence, we
expect the balanced chain to mix poorly. Later in section 5 we discuss the eigenvalue
spectra of the regular random walk transition matrix (equation (4.1)) and the balanced
random walk transition matrix (equation (4.4)).

4.3. Combined random walk. In order to construct a rapidly mixing Markov
chain for uniform sampling of G = (V,E), we create a “mirror vertex” v′ for each
vertex v ∈ V , connect the original vertex and the mirror vertex to each other by
transitions, and use different transition probabilities between the original vertices
than those we use with the mirrors.4 We call such a chain a combined random walk.
A small example of the mirror construction is illustrated in Figure 1.

The original vertices v ∈ V of the input graph G are called the sampling side of
the modified graph and the mirror vertices v′ ∈ V ′ form the mixing side. The goal of
the construction is to ensure that each transition probability can be computed locally
in the neighborhood of the current state based on the adjacency list of the vertex
corresponding to the current state and the degrees of the neighbors.5 Keeping the
computation as local as possible is desirable to improve the scalability: for large and
dynamic graphs, no global information is available, and even estimates on figures such
as the graph order, size, or maximum degree can be time-consuming or impractical
to obtain.

4The goal is to locally compute the transition probabilities based on the degrees of the neighbors,
as detailed later in this article.

5In the usual sense, local computation only involves knowledge on the identities of the neighbor
nodes and not on their degrees. In our case, the locality involves this lookahead: it is necessary to
traverse the neighbor list of each neighbor in order to determine its degree.
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Fig. 1. Left: An example graph where V = {a, b, c, d} with the degree of each vertex shown
beside it. Right: A schematic construction of the Markov chain of the combined random walk without
having yet taken aside the probabilities ε and ε′ that are illustrated as the dotted-line transitions—the
values shown are the transition probabilities of the balanced (on the sampling side) and the regular
(on the mixing side) chains. The self-loops have been omitted from the figure for clarity.

The transition probabilities on the sampling side are set relative to those of either
of the above balanced random walks, and on the mixing side, a regular random walk
is mimicked with minor modifications. For transitions from a vertex v to its mirror
vertex v′, we set

(4.7) pv,v′ = ε,

where ε is a parameter of the construction. Hence we need to set aside probability
mass on the sampling side in order to ensure that

(4.8) ε+ pv,v +
∑

w∈Γ(v)

pv,w = 1

for each vertex v on the sampling side. The balanced chain has self-loops, but un-
fortunately pv,v are arbitrarily close to zero, for example in the presence of a large,
star-topology induced subgraph. Hence we need to design such variations of the chains
to be sure that pv,v ≥ ε on the walk on the original graph, such that the probability ε
may be subtracted from the self-loop when constructing the combined chain, without
altering the other transition probabilities between vertices on the sampling side. Note
that for ε > 0, the combined chain is ergodic, which guarantees the existence of a
unique stationary distribution.

We achieve such a design by introducing a guaranteed-weight self-loop for each
vertex on the sampling side. For example, if we want to ensure that ε ≥ 1

2 , we divide
each transition probability out of each vertex by two and add the 1

2 thus gained
(as the initial outgoing flow was necessarily one and was halved) to the self-loop
probability. For any γ > 1, we may thus ensure that ε ≥ 1

γ . For a fixed γ, the
transition probabilities pv,w of a given Markov chain are modified as follows to allow
p′v,v ≥ γ−1, and hence loosening the restrictions on ε for all v ∈ V :

(4.9) p′v,w =

⎧⎪⎨
⎪⎩

γ − 1

γ
· pv,w if w ∈ Γ(v),

γ − 1

γ
· pv,w +

1

γ
if v = w.
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Applying such a modification to the balanced chain, we arrive at the following tran-
sition probabilities:

(4.10) pv,w =

⎧⎪⎪⎨
⎪⎪⎩

γ−1
γ min

{
1

deg(v)
1

deg(w)

}
if w ∈ Γ(v),

1
γ +

∑
w∈Γ(v)

γ−1
γ max

{
0, 1

deg(v) − 1
deg(w)

}
if v = w,

0 otherwise,

where we continue to denote by deg(v) the degree of v in the original graph G, i.e.,
ignoring in the degree the added edge that connects the two sides.

Similarly, we add a self-loop to each vertex v′ ∈ V ′ such that

(4.11) pv′,v′ ≥ ε′v,

where ε′v is the probability of returning to the sampling side from v′,

(4.12) pv′,v = ε′v.

See Figure 2 for an illustration of the connections between the sampling and the
mixing sides. For the example graph of Figure 1, the resulting Markov chain would
contain eight states, two per each vertex, a pair of additional transitions between each
vertex and its copy on the mixing side (the dotted arrows of Figure 1), two transitions
per each edge of the input graph, and a self-loop per each vertex, giving a total of 24
transitions. The probabilities associated with these transitions depend on the value
chosen for ε.

w′w

v v′

pw,vpv,w pw′,v′

pv′,v′

pw,w pw′,w′

pv′,w′

pv,v′

pv′,v

pw,w′

pw′,w

pv,v

Fig. 2. A diagram of the mirror construction for two vertices v and w on the sampling side
and their mirror vertices v′ and v′ on the mixing side.

The transition probability from the sampling side to the mixing side is constant
over the vertices on the sampling side, but the return probability from the mixing
side varies depending on the mirror vertex, as will be shown later. Hence we need to
fix a probability

(4.13) δ ≥ max
v′

ε′v

for the self-loop probability on the mixing side so that we can always safely subtract
ε′v from the self-loop of the mixing side chain. The transition probabilities within the
mixing side are therefore

(4.14) pv′,w′ = (1− δ)
1

deg(v)
.
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The stationary distribution πc of the combined chain is a weighted combination of
the distributions of the sampling side, πb, and that of the mixing side, πr, such that an
α-fraction of the time, the Markov chain is on the sampling side, and a (1−α)-fraction
of the time is spent on the mixing side:

πc = (πc(v1), . . . , πc(vn), πc(v
′
1), . . . , πc(v

′
n))(4.15)

=
(
απb(v1), . . . , απb(vn), (1 − α)πr(v1), . . . , (1− α)πr(vn)

)
.

Theorem 4.1. For any α ∈ (0, 1) and ε ∈ (0, 1), there exists an ε′v for each
v ∈ V such that (4.16) is a stationary distribution for the combined chain for the
choice of ε and α.

The relationship between the values of ε and α is derived in the proof. Before
entering the details of the proof, we wish to highlight the fact that the values of α
and ε will fix the values that need to be set for ε′v, as will be shown in the proof.
Also, the reason that ε must be strictly positive is that it guarantees the aperiodicity
of the combined chain, and hence the existence of a unique stationary distribution.

Proof. We again examine the detailed balance conditions (equation (2.2)) for the
above distribution to show that it is a stationary distribution of the combined chain.
There are three cases to consider; for a self-loop, the detailed balance conditions
trivially hold by definition regardless of the transition probabilities.

1. Transitions within V on the sampling side: v ↔ w:
As the transition probabilities pv,w in V for v �= w have not changed
other than the introduction of the same multiplicative constant γ−1

γ
for ensuring the self-loop to be able to cover for ε, we now multiply
both sides of (4.4) by the multiplicative constants γ−1

γ and α, which
both cancel out.

2. Transitions within V ′ on the mixing side: v′ ↔ w′:
The transition probabilities together with the above distribution
fulfill the detailed balance conditions, as we need only add the
multiplicative coefficients (1− α) and (1− δ) on each side of (4.3),
and they cancel out.

3. Transitions between V and V ′: v ↔ v′:
This condition can be met by setting dependencies between the pa-
rameters of the construction, the transition probability ε, the return
probabilities ε′v, and the weighting coefficient α that determines the
proportion of time spent on the sampling side, as described below.

The detailed balance condition of the third type is

(4.16)
πc(v) · pv,v′ = πc(v

′) · pv′,v,

α · 1
n
· ε = (1 − α) · deg(v)

2m
· ε′v.

From their definitions we know that α ∈ (0, 1), ε ∈ (0, 1), and, for all v ∈ V , also
ε′v ∈ (0, 1). Solving the above equation for ε′v gives

(4.17) ε′v =
2mαε

n(1− α)deg(v)
=

2m

n
· α

(1− α)
· ε · deg(v)−1.

Using the above value for ε′v fulfills the last of the three detailed balance conditions
and completes the proof.
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The first coefficient 2m
n is the average degree k of the original graph G. This is

a global property of the graph, but we can eliminate its presence in the parameter
equation by further restricting α such that

(4.18)
α

1− α
· k = 1 ⇒ α =

1

k + 1
.

A pleasant feature of the construction is that α does not need to be known to
implement the combined chain: it influences only the portion of time the chain spends
on the sampling side. Hence knowing α is useful for determining the number of steps
that the chain needs to be run until it converges. If no information on the average
degree is available a priori, one can obtain an estimate during the sampling walk itself
by taking the average degree of the vertices that have been visited on the sampling
side of the construction. This estimate should improve as the chain converges—we
experimentally examine this in section 5 (Figure 13).

Using (4.18), equation (4.17) becomes simply

(4.19) ε′v =
ε

deg(v)
,

which in turn gives us a safe value for δ, as ε′v is maximized for the minimum degree
in G, which in a connected graph is always at least one, giving δ ≥ ε. Setting δ = ε we
eliminate the presence of the δ-parameter in the construction of the combined chain.

The above construction of combining two chains—one rapidly mixing but to an
undesired distribution and the other slowly mixing but to a distribution of interest—
can be generalized to scenarios other than uniform sampling. The prerequisite is the
introduction of a self-loop on both sides such that the side-change transitions can be
subtracted without affecting the relative stationary probabilities on each side. Also,
to achieve the detailed balance conditions for the crossings from one side to another,
one needs to define ε′v of a vertex v to fulfill (4.16),

(4.20) α · π1(v) · ε = (1− α) · π2(v) · ε′v,

where π1 is the stationary distribution of the sampling side chain alone, and π2 is
that of the mixing side chain. This property would allow applying the construction to
problems in combinatorial generation, enumeration, and counting, where a problem
instance needs to be obtained according to some distribution of interest, but all simple-
definition chains converging to the distribution in question mix impractically slowly.

Analytically, the improvement in the mixing time can be argued as follows. Let λR
i

be eigenvalues of the regular walk and λB
i those of the balanced walk. The two n× n

transition matrices—denote them by PR and PB—have the same nonzero pattern,
with the exception of the diagonal, which is zero for the regular walk and can take
positive values on the balanced walk. The effect of the diagonal on the spectrum of a
transition matrix is simple: the heavier the diagonal, the larger the value of the second
eigenvalue. This agrees with the intuition on self-loops slowing down the mixing.

Denoting a unit vector by 1 = (1, 1, . . . , 1), the transition matrix PC of the
combined chain is a 2n× 2n matrix, where the upper left quadrant is (1− ε)PB, the
upper right quadrant is diag(ε1), the lower left is diag(e) where e = (ε′1, ε

′
2, . . . , ε

′
n),
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and the lower right quadrant is diag(1− e)PR:

(4.21) PC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1− ε)p
(B)
1,1

... (1− ε)p
(B)
1,n ε . . . 0

...
. . .

...
... ε

...

(1− ε)p
(B)
n,1 . . . (1− ε)p

(B)
n,n 0 . . . ε

ε′1 . . . 0 (1− ε′1)p
(R)
1,1 . . . (1− ε′1)p

(R)
1,n

... ε′k
...

...
. . .

...

0 . . . ε′n (1− ε′n)p
(R)
n,1 . . . (1− ε′n)p

(R)
n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, if we were to set ε = 0 and ε′i = 0 for all i, the spectrum of PC would simply
be a list of all the λB

i and λR
i combined (corresponding to a reducible Markov chain

with two eigenvalues equal to one). As we have already observed, adding probability
mass on the diagonal by assigning ε > 0, causing all the ε′i’s to be nonzero as well,
makes the chain irreducible and aperiodic, dropping a principal eigenvalue just below
one. However, λC

2 of PC will keep dropping as ε increases until it reaches a critical
value, where the slow-down of the increasingly heavy diagonal starts to slow down
the mixing.

The interesting regime is those values of ε > 0 where λC
2 < λB

2 , that is, the com-
bined chain mixes faster than the balanced chain. The optimal value of the parameter
ε with respect to the bound of (2.4) is the value that minimizes λC

2 , but the entire
regimen allows an improvement in the mixing time. In general terms, if the total
weight of the spectrum (that is, the sum of the absolute values of the eigenvalues)
is lower, the chain mixes faster. Also the total weight first decreases as ε is slowly
increased from zero, but begins to increase for larger values of epsilon. In the next
section we address this and other performance issues through experimental analysis.

5. Experiments. The implementation of the combined walk depends on the
information available. We suppose that the graph is stored in a format that permits
queries of adjacency lists of vertices. The degree of a vertex is simply the number of
elements in its adjacency list.

Should one have access to the complete information of the graph, one may apply
a preprocessing step that retrieves the list of neighbors of a given vertex along with
the degree to create such a database of the graph in adjacency list format. Such
preprocessing takes O(m) time and space and could also be augmented, with no
loss of asymptotic efficiency, to contain the degree of each neighbor in the adjacency
lists, which would later allow higher efficiency in the implementation of the sampling
method. We leave to future work a version of the sampling that estimates the vertex
degrees during the walk instead of computing them by preprocessing or by lookaheads;
the use of such estimates are likely to slow down the convergence of the chain to the
desired distribution, as the transition probabilities will change over time.

The neighbor degrees are useful when computing the transition probabilities on
the sampling side. In the absence of such precomputed neighbor degrees, which is the
common case, every step of the sampler has time and space complexity O(D), where
D is the maximum degree of the graph. Typically, the average degree of a real-world
graph is much lower than the maximum degree, for which the typical cost of each step
is much lower.

The computation time of the sampling as a whole, being the number of steps that
are taken, depends linearly on the size of the sample needed and the mixing time of
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the chain. In this section we experimentally study the mixing time to provide an idea
of the efficiency of the proposed method.

It is noteworthy that the above sampler construction does not require explicitly
copying the vertex set: it suffices to maintain a state flag to indicate which set of
transition probabilities should be used. Each of the transition probabilities needed at
a vertex v, whether on the sampling side or the mixing side, is locally computable from
the parameter ε, deg(v), and the degrees of the vertices in Γ(v) (which are needed on
the sampling side).

The implementation of a sampling method is follows:
1. Run the Markov chain until convergence.
2. While on the mixing side, keep running the chain.
3. Once on the sampling side, take a sample.
4. For another independent sample, return to step 1.
5. As an alternative to step 4, for uniformly distributed samples that are not

independent, one may take a sample on each step where the walk is on the
sampling side.

It is necessary either to determine a safe step count that should suffice for the chain
to mix, or to define some alternative stopping condition to detect convergence. In
our experiments, we defined the step count explicitly and took sets of independent
samples, that is, remixed the chain after each sample. In doing so, we see there is
no statistical difference whether the chain is started in the previously sampled vertex
or in a fixed start vertex as long as the graph is connected and true convergence is
reached.

5.1. Test data. We studied the behavior of the method on real-world collab-
oration graphs [41, 53, 47], a deterministic network model [19], and a closed-form
graph.

A collaboration graph is a social network where the vertices represent authors of
scientific articles and the edges represent the coauthorship relation. Our collabora-
tion graphs are based on bibliography files from The Collection of Computer Science
Bibliographies [1], using only the mathematical bibliographies in BibTEX format (cf.
[53] for details). Different subgraphs of the collaboration graph thus compiled are
used to obtain graphs of different orders.

The deterministic scale-free graph construction by Dorogovtsev, Goltsev, and
Mendes (DGM) [19], based on [5], ideally suits our purposes because it is analytically
easy to approach. In the model, the initial graph G−1 = (V−1, E−1) consists of two
vertices v and w and the edge (v, w). At each discrete time step t ≥ 0 of the process,
per each (v, w) ∈ Et−1, a new vertex u is added, together with edges (v, u) and (w, u).
Thus at time t = 0, G can be represented as a triangle. See Figure 3 for an illustration
of the first five generations. At time t, the number of edges is

(5.1) |Et| = |Et−1|+ 2|Et−1| = 3|Et−1| = 3t+1,

as |E−1| = 1. Similarly, the number of vertices is

(5.2) |Vt| = |Vt−1|+ |Et−1| = 3(3t + 1)/2.

Therefore the average degree of the resulting graph Gt is

(5.3) kt =
2|Et|
|Vt| =

4 · 3t
3t + 1

.
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G1

G−1 G0 G3

G2

Fig. 3. The pseudofractal graph (DGM) Gt for t ∈ {−1, 0, 1, 2, 3} (adapted from [19]). Vertices
added at time step t are shown in white.

Also note that the maximum degree Δ of the graph Gt is always double the maximum
degree of the previous generation and that for G0 we have Δ = 2. Hence Δt = 2t+1.

The degrees of the vertices are well behaved: the vector d of distinct degree values
at time t ≥ 0 is

(5.4) d = (d1, d2, . . . , dt+1) = (2, 22, 23, . . . , 2t, 2t+1).

Letting ηi = |{v | v ∈ Vt, deg(v) = di}|, the vector η of the number of vertices with
degree di is

(5.5) η = (η1, η2, . . . , ηt+1) = (3t, 3t−1, 3t−2, . . . , 32, 3, 3).

For these graphs, the transition probabilities ti that go out from a vertex that
has been alive for i generations are easy to compute. The degrees are known from
(5.4), giving tv = 2−(v+1). Thus for the newly created vertices, the outward transition
probability is t0 = 1

2 . Similarly for vertices that were created on the preceding step,
we have t1 = 1

4 , and so forth.
We then experimented with a closed-form graph, that is, a graph where the neigh-

borhood relation is implicitly defined by the vertex identifiers, which permits us to
avoid the IO (input and output) overhead in the experimentation, as the graph needs
not to be read from disk. One of the simplest closed-form graph constructions that
can be scaled to massive orders is the hypercube Hb, where the vertices are b-bit binary
strings (where b is any positive integer) and two vertices are neighbors if the Hamming
distance of the bit strings is one, that is, if the strings differ only in one bit. Figure 4
shows the construction for b ∈ {0, 1, 2, 3}. The number of vertices for the hypercube
is nH = 2b and the degree of each vertex is b, as there are exactly b positions in which
the string may differ. Hence, we have mH = b · 2b−1 edges.

The downside is, evidently, that the hypercube is a regular graph, where uniform
sampling is achieved by a regular random walk, and performing the combined walk
would gain us nothing. We avoid this problem by inserting an additional hub vertex
vh with degree Δ into the hypercube, increasing n by one and and m by Δ. We
used the following construction for selecting the neighbors of the hub to be able to
control Δ easily and maintain the implicit definitions of the neighborhoods. Denote
the b-bit hypercube by H = (VH , EH), where VH = {1, 2, . . . , 2b}, and let ξ be an
integer parameter to control the neighborhoods. Define

(5.6) Γ(vh) = {v | (v ∈ VH) ∧ (v mod ξ ≡ 0)} .
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b = 3

b = 0

b = 1

b = 2
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00
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111110

010 011
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000

11

Fig. 4. The hypercube graph for b ∈ {0, 1, 2, 3}. The vertex labels are shown inside the vertices;
here ε denotes the empty string.

Knowing ξ, we may derive6

(5.7) Δ =
⌊
1
ξ 2

b
⌋
.

Note that a larger value of ξ gives a smaller-degree hub. We denote the augmented
hypercube by Hξ.

5.2. Mixing time and coverage. We computed the eigenvalue spectra of the
regular chain’s transition matrix and the balanced chain’s transition matrix for a few
generations of the DGM model; the plots are shown in Figure 5. It is evident from the
plots that the eigenvalues of the balanced chain are larger than those of the regular
walk, which gives evidence of slow mixing, at least partially caused by the self-loop
probabilities.

In Figure 6, ε is varied from zero to one for the same four DGM graphs. On the
left, the magnitude of |λC

2 | is shown, and on the right, we plot

(5.8) W =
1

n

n∑
i=1

|λC
i |

as another estimate of the mixing time. This normalized sum is closely related to
that of the energy of the graph [30], in which the spectrum of the adjacency matrix
is used instead of the spectrum of the a transition matrix, and is even more closely
related so to the Laplacian energy [31]—for more information on the relationship of
the spectrum of the Laplacian of a graph to that of the transition matrix of a regular
random walk, see [44].

The horizontal lines in Figure 6 correspond to the magnitude of the second eigen-
value and to the spectral weight of the regular and the balanced random walks. Those
of the regular walks (that mix fast) are always clearly below the values corresponding
to the balanced walks, and are also below all those attained by the combined walk,

6The derivation is straightforward and left to the reader.
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Fig. 5. The spectra of three generations of the DGM model for two different transition
matrices—that of the regular chain (equation (4.1)) and that of the balanced chain (equation (4.4)).
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Fig. 6. Left: The magnitude of the second eigenvalue |λ2| of the transition matrices of the
three types of Markov chains. Right: The normalized total spectral weight of the transition matrices.
The horizontal lines are the values of the regular and balanced walks, and the curves are those of
the combined walk, where the behavior depends on the value of the parameter ε. All plots include
a 503-vertex collaboration graph and three generations of the DGM model and were computed with
Octave.

as can be expected. The gain of the combined walk when compared to the balanced
walk is, however, significant. For the collaboration graph (heavy dotted lines), the
difference between the regular and the balanced walk is smaller than for the DGM
graphs.

Higher generations of the DGM model appear to mix worse than preceding gener-
ations in light of (2.4), as the value of the second eigenvalue grows with the generation
as follows: 0.9567 for the third generation, 0.9864 for the fourth, 0.9957 for the fifth,
0.9986 for the sixth, and 0.9996 for the seventh (computed on Octave [21] using eigs

from ARPACK [39]). In terms of the normalized spectral weight there is very little
difference. Also, an interesting effect is that while the spectral weight of the regular
chain on the DGM model decreases in higher generations, for the balanced walk it
increases, as the balanced walk gets stuck due to the increasing difference between the
average and the maximum degree, as both the number of nodes with two neighbors
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and the degree of the three hubs increase rapidly. The curves for the combined walk
practically overlap for these three generations.

It is notable that a wide range of values of ε offer an improvement in these
spectral measures of the mixing time when compared with the balanced walk—the
curves cross the horizontal line rather late. Judging only by the second eigenvalue,
almost all values of ε are good: the range [0.1, 0.9] improves upon the mixing time
of the balanced chain with the best values in [0.1, 0.2]. In terms of the normalized
spectral weight, ε < 0.8 is always an improvement, with the optimal value being in
the interval [0.3, 0.5]. An interesting observation is that the optimal values of ε are
neither the same nor similar for these two estimates of the mixing time.

The general conclusion from Figure 6 is that the selection of a good value of ε is
not hard, although it could be improved by the introduction of some heuristics. We
leave this aspect to future work.

For a simulation-based estimate of the mixing time, we must have a way to detect
when the chain has mixed. Examining whether a Markov chain has converged to the
stationary distribution can be done, for example, by measuring the total variation
distance D of (2.3).

An experimental evaluation of the total variation distance for a Markov chain can
be done by running several instances of the chain from the same start position and
calculating an estimate based on the state distribution over the independent instances
[9]. Denoting the number of instances run by I and the number of instances that are
at state v at time t by ft(v), a conservative estimate that slightly overestimates the
total variation distance at time step t is

(5.9) Dest = 1−
∑

ft(v) �=0

min

{
ft(v)

I
,
1

n

}
.

The bias of the estimator can be analyzed for different stationary distributions.
For example, take I instances over a chain with n states that has the uniform dis-
tribution as the stationary distribution. Assume that at time tm the instances have
mixed, and hence the probability of finding any single instance j in state v ∈ V
is p = 1

n . The number of instances ft(v) in a state v at time t is binomially dis-

tributed with p = 1
n . As the estimate takes the minimum of 1

n and the fraction ft(v)
I ,

we need only consider states in which there are less than � 1
n� instances, as these states

are the ones that introduce bias to the estimate. The deficit of a vertex with frequency
ft(v) < � 1

n� is

(5.10)
1

n
− ft(v)

I
.

Combining the probabilities that there were exactly j ∈ [0, 
 I
n�] instances at each of

the n states and the corresponding deficits, the total bias is

(5.11) B = n

� I
n �∑

j=0

pj(1 − p)�
I
n �−j

(
I

j

)(
1

n
− j

I

)
.

Figure 7 shows the bias estimate of (5.11) for four different values of n, assuming a
uniform stationary distribution and a fully mixed chain.

We studied the convergence of the sampling methods to their respective stationary
distributions over the vertex set by estimating the total variation distance between
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Fig. 7. The estimated bias of (5.11) to the estimator of total variation distance (5.9) for four
different values of n = |V |. Note that when the number of instances is a multiple of the state count,
the curve displays a knee bend, as the possibility of dividing the instances evenly over the state set
decreases the total bias.

the obtained and the stationary distribution with (5.9). For the combined walk,
only those instances that were currently in a sampling state (instead of being on
the mixing side of the construction) were included in the estimate, and hence the
estimates for the other two walks are based on a greater number of independent
instances than those of the combined walk. Using such estimation, the stationary
distribution to which the combined walk should converge is the uniform distribution.
Figure 8 shows the estimate for the DGM construction, generations five and seven,
and for two collaboration graphs based on natural data.

As the bias of the estimate depends on the number of instances for which it is
calculated, we have plotted in Figure 9 the actual number of instances on the sampling
side of the combined walk for the data of Figure 8.

We studied the tendency of the balanced chain to unwanted locality by plotting
the percentage of vertices that have received at least one visit during a long random
walk; we call this percentage coverage. The regular chain will visit each vertex at
least once much more rapidly than the balanced chain, as the balanced chain stalls in
local neighborhoods—this can be seen in Figures 10 and 11.

5.3. Sample quality and parameter estimation. We evaluated the quality
of the samples obtained by comparing the degree distribution of samples obtained
by the different methods to the real degree distribution. From Figure 12 it can be
seen that the regular random walk samples vertices preferentially to their degree,
whereas the other methods (that weigh vertices inversely to their degree) maintain an
indifference to vertex degree and obtain samples that preserve the form of the original
degree distribution.

We also studied the accuracy of the estimate of k that one gets by keeping track
of the number of visits on the sample side and the total accumulated degree. We ran
30 independent 10,000-step combined walks with initial vertices chosen uniformly at
random. We computed such an estimate on the average degree, shown in Figure 13.
Almost from the start, the estimate stays near the true value, permitting on-the-fly
evaluation of the value of α, and hence knowing when the chain should be mixed.

5.4. Performance and scalability. We wanted to estimate the performance
and scalability of the method and chose to experiment first on the closed-form graph



SCALABLE UNIFORM GRAPH SAMPLING 2955

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

T
V

D
 (

es
tim

at
e)

Smaller DGM (gen. 5)

balanced
combined

regular

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

Larger DGM (gen. 7)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

T
V

D
 (

es
tim

at
e)

Step

Smaller collaboration graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

Step

Larger collaboration graph

Fig. 8. Values of the estimated D cover time for the balanced (�, equation (4.4)), combined
(•, equations of section 4.3, two curves as explained below), and regular (�, equation (4.1)) chains.
The bias of the uniform distribution estimate (5.11) for each graph is shown as the lower dotted
line. The estimate is calculated over a set of I = 15, 000 independent walks in two DGMs, and two
collaboration graphs. Note that for the combined chain (k = 4, ε = 0.25), the expected number of
instances on the sampling side of the combined walk is αI ≤ 15, 000, and hence the bias is larger (the
upper horizontal line on the plot). Hence, for ease of comparison, we also ran the combined walk for
I ′ = α−1I to achieve the same expected bias (drawn as a lower horizontal line) as a balanced walk.
All walks were started at a fixed vertex, initially chosen at random. The smaller (fifth-generation)
DGM has n = 366 and m = 729, and the larger (seventh-generation) DGM has n = 3, 282 and
m = 6, 561. The smaller collaboration graph has n = 503 and m = 828, and the larger collaboration
graph has n = 5, 909 and m = 13, 510.

Hξ of section 5.1 to perform experiments on larger graphs. We used different values
of ξ to create a few different degree distributions. For the rest of this section, for
simplicity, we denote this hub-augmented graph Hρ by G = (V,E), its order by n,
and its size by m. We fixed the bit-string length to b = 30, which gave us a graph
with n = 1, 073, 741, 825 and m = 16, 106, 127, 360 + Δ, where Δ is given by (5.7).
The resulting hub degrees when b = 30 are shown in Table 2 for some values of ξ.

We first took a half-million independent samples using an approximately 200,000-
step walk per sample; if the walk was on the mixing side on step number 200,000, we
took the sample as it first hit the sampling side. This experiment was performed for
ε ∈ {0.2, 0.4, 0.6, 0.8}. We kept a record of some measures of interest, the most relevant
of which are shown in Table 3. For comparison, we also ran the same experiments on
the regular random walk.

By definition, smaller values of ε yield fewer mode switches and fewer self-loops,
whereas the growth in the extent to which the graph is traversed causes an increase
in the number of lookaheads needed to compute the neighbor degrees, and hence the
running time of the walk increases, as seen in Table 3. Naturally, ξ has no significant
effect on the number of mode switches made nor on the number of self-loops followed,
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Table 2

The hub degree Δ and the edge count for the augmented hypergraph with different values of ξ
for b = 30; there is always exactly one hub by construction. The immediate neighbors of the hub are
called router vertices and have degree b+1, and the remaining unaffected vertices are called normal
and have degree b. The average degree (≈ 30) hardly changes as the number of edges m is so high
in comparison to the number of vertices, n = 1, 073, 741, 825, and ξ has only a small effect on m
with the value chosen for b. Similarly, α ≈ 0.03226 for all values of ξ used.

ξ Δ m

302 1, 193, 046 16, 107, 320, 421
303 39, 768 16, 106, 167, 143
304 1, 325 16, 106, 128, 700
305 44 16, 106, 127, 419

Table 3

Measures of interest in the augmented hypercube experiments for ξ = 304 and four values of
ε. All walks were of 200, 000 steps. The columns indicate the number of samples taken per second
of runtime (SPS—for the regular random walk this was 82.621, which is naturally higher, as less
computation is required per sample), the number of mode switches (MS) per sample, the number
of self-loops (SL) followed per sample, the number of steps actually taken (SC), and the effective
step count (ESC) computed by subtracting from the number of steps taken the number of self-loops
followed, all of these being averages over the samples taken, rounded to the nearest integer.

ε SPS MS SL SC ESC

0.2 32.236 2, 582 36, 152 200, 145 163, 993
0.4 35.589 5, 162 72, 285 200, 072 127, 788
0.6 40.914 7, 743 108, 414 200, 048 91, 634
0.8 45.160 10, 324 144, 544 200, 036 55, 493

as these measures both depend on ε. Also note that k is nearly unaffected by the
values of ξ used in this experiment, for which only the measures for ξ = 304 are
included in Table 3, although the experiment was run also for ξ = 302 and ξ = 303.

A noteworthy point is that the self-loops can be avoided during the algorithm
execution: instead of following a self-loop, the number of steps spent in self-loops
can be generated at random using the geometric distribution. Leaving a vertex is
modeled as a success in a Bernoulli trial, whereas following a self-loop is a failure, as
mentioned in section 3 for the coin-flip random walk. The number of effective steps
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Fig. 10. The coverage achieved by the regular (left) and the balanced (right) walks at each step.
In all six plots, averages and standard deviations of 50 independent walks are shown.

taken to actually traverse the graph depends on ε, and with ε = 0.8 we see that in
fact only a quarter of the transitions actually explore the graph. This is important to
take into account when defining the step count: for smaller values of ε, smaller step
counts suffice to explore the graph more widely.

We studied in particular the visit counts and sampling frequencies in a small
experiment of taking one million samples of the augmented hypercube using ρ = 3
with 20,000-step and 100,000-step walks using a combined walk with ε = 0.5 and
a regular walk. We compared the sampling frequencies to the analytical expected
sample counts, based on the degree distribution of the input graph and the sample
count assuming uniformity. Intuitively, the combined walk visits and samples the
higher-degree vertices less than the regular walk.

We ran an experiment to study the number of distinct vertices visited by the
chain and examined as lookahead when obtaining a single sample, varying the length
of the walk. It is important to note that the number of steps needed for mixing
depends heavily on the graph structure, and the number of steps necessarily affects
the number of distinct vertices visited. We ran walks of different lengths to obtain a
single sample each from the hypercube construction. The results are shown in Figure
14 in terms of steps taken, unique vertices visited, lookaheads required, and total
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Fig. 12. Sampling frequency of vertices by their degree from a collaboration graph with n =
5, 909 and m = 13, 510. A set of n independent samples was taken, fully restarting from the same
randomly chosen vertex, allowing the walks to mix for t ≥ 5, 000. The small plots show the actual
degree distribution and the frequency distributions for all walks, and the larger plot overlays all these
distributions. We used ε = 0.25 for the combined walk. Note that both axes have logarithmic scale.

coverage and steps per unique vertex. The plots show that, on average, a previously
unseen vertex is visited every two steps taken by the chain, and the frequency of
discovering new vertices (unsurprisingly) decreases a little for longer walks. Also,
even with the lookaheads, the proposed method achieves locality, as only a small
fraction of vertices need to be examined as lookaheads.

The samples taken in these walks were also analyzed to show how their distribu-
tion changes as more steps are taken per sample. Figure 15 shows 20-bin histograms
over the 5,000 samples taken, grouping the vertices per their label (zero is the hub
vertex vh and its additional neighbors are evenly distributed by label as defined by
(5.6)).
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Fig. 14. The scaling behavior with respect to the number of previously unseen vertices visited by
a walk and examined as lookahead in the combined walk on the hypercube construction with b = 30,
ξ = 303, and ε = 0.5. Average and standard deviation over 30 replicas for five walk lengths: 5, 50,
500, 5,000, and 50,000 steps. All walks were restarted at a fixed vertex and took a single sample.

We also recorded the number of unique vertices visited by the chain in the 13th-
generation DGM graph, with n = 2,391,486 and m = 4,782,969. We obtained a
sample of 5,000 vertices, restarting the chain for each sample taken at a fixed vertex,
using 100-step walks and ε = 0.1. During the sampling, we recorded the complete
list of vertices visited and then calculated how many distinct vertices were in fact
visited on these 5,000 walks. This was repeated over 30 replicas and then the results
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were averaged. The number of unique vertices visited was on average 179,361, that is,
7.5 percent of the graph. This, dividing by 5,000, gives 35 unique visits per sample.
However, if only a single sample is taken, the advantage of redundancy in vertex
examinations over the distinct samples is lost. Hence, for comparison, we ran 30
replicas taking a single sample. For single samples, using the same parameters, the
number of unique vertices visited was on average approximately 64, which is 0.003
percent of the graph.

We repeated this same experiment, with the same parameters, on a collaboration
graph of 108,624 vertices and 333,546 edges. The average of unique vertex visits over
30 replicas was 65,834 for the 5,000 samples in total—approximately 60 percent of the
graph—giving 13 unique visits per sample. For a single sample, the number of unique
vertex visits was on average approximately 71, which is 0.01 percent of the graph.

Changes in the parameter ε or the length of the walk would naturally affect the
number of unique vertices visited. It is clear from these results that also the structure
of the graph plays an important role in the extent to which the graph is traversed, as
it also affects the length of the walk required for reaching the stationary distribution,
as the collaboration graph and the DGM 13th-generation graph yield distinct results.
We leave to further work the auto-adaptation of the parameter ε based on structural
information gathered during the execution of the sampling method.

6. Conclusions. In this paper, we presented a construction for sampling undi-
rected graphs uniformly by local computation. Two classic Markov chains are com-
bined into one: a regular random walk provides rapid mixing to the construction,
whereas a balanced walk permits sampling from the uniform distribution. We showed
formally the correctness of the construction and verified by experiments on natural
and artificial graphs that it has the desired properties. We look forward to construct-
ing sampling methods for directed and weighted graphs. The asymmetry caused by
weights or edge directions breaks the validity of the presented construction.

As future work, it would also be useful to study how well different kinds of sam-
pling methods preserve different structural properties of large (natural or generated)
networks. Chakrabarti et al. [10] propose the NetMine tool for analyzing large graphs
by providing views on different structural properties of graph instances given as in-
put. Among other features, the tool aims to identify vertices or subgraphs that are
structural outliers, i.e., pointing out nonuniformities in the network structure. The
scalability issues in the implementation of such tools could be avoided by first employ-
ing efficient sampling mechanisms to obtain a preview of the plots that are assumed



SCALABLE UNIFORM GRAPH SAMPLING 2961

to be of interest, and then selecting the measures to be calculated for the full data
set based on observations made on the preview plots.
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Birkhäuser Boston, Boston, MA, 1993.

[51] A. Tanay, R. Sharan, and R. Shamir, Discovering statistically significant biclusters in gene
expression data, Bioinformatics, 18 (2002), pp. S136–S144.

[52] L. Tierney, Markov chains for exploring posterior distributions, Ann. Statist., 22 (1994),
pp. 1701–1762.

[53] S. E. Virtanen, Properties of Nonuniform Random Graph Models, Research Report A77,
Helsinki University of Technology, Laboratory for Theoretical Computer Science, Espoo,
Finland, 2003.
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