
Decision Making in a Distributed Sensor Network

Satu Elisa Schaeffer† Jonathan P. Clemens Patrick Hamilton
elisa.schaeffer@hut.fi jonathan.p.clemens@intel.com patrick.hamilton@charter.net

August 6, 2004

Abstract
Given a binary output sensor network of a particular densityand a random distribution, we examine

the effects of simple malfunctioning sensor nodes on the ability of the network to reach a timely and cor-
rect decision. We examine the effects of malfunctioning sensor frequency and distribution, and network
decision-making thresholds on the efficacy of the decision-making process. Based on repeated simula-
tions, we are able to give recommendations on how to tune the design parameters of a sensor network to
fit a specific application when the cost of false positives andfalse negatives can be estimated.

1 Introduction

A sensor network is a collection ofsensor nodes that is spread around an area in which a certain phenomenon
of interest is expected to take place [2]. Often the phenomenon is some type of a security threat, the presence
of which needs to be decided by the network [5]. An example could be a national park, where forest fires
are to be avoided — sensor nodes that are capable of detectinge.g. smoke or high temperatures are scattered
in the park and the network needs to propagate an alarm to the forest guard in case of a fire. In most cases,
the sensor placement is not a carefully designed process buta rather random scattering. Each sensor node is
composed of essentially four components [1]:

• the sensing unit that makes observations of the environment; in this paper, we limit our attention to
binary input sensors,

• the processing unit that determines what actions need to be taken; this is commonly a very limited
computational device with little memory,

• the transceiver unit that receives and broadcasts signals enabling nearby sensor nodes to communi-
cate; usually the range of the broadcast is somewhat limited,

• the power unit — essentially a battery — that supplies energy for the other components; in this
study, we exclude energy-related issues, solutions to which have been discussed in several papers (see
e.g. [6, 8, 12]).

The data communication between sensors is another complex,much studied topic that we leave unat-
tended in this study. We assume that the sensors may have a method of neighborhood detection, but in the
cases studied in our experiments (Section 4), it suffices that a sensor is able to detect when a neighboring
sensor is broadcasting an alert. In this study, we have no need for a routing protocol, as the sensors only
communicate to their immediate neighbors; issues of routing are much studied in existing literature (see
e.g. [7] and the references therein).
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The sensor works as adetector: given a set ofobservables (the possible broadcasts of the neighboring
sensors and the state of the local environment detected by the sensing unit), the sensor must choose between
possiblehypotheses (whether there is an alert condition present or not) [5]. In our restricted scenario, a
sensorv calculates a functionf : {0, 1}deg(v)+1 → {0, 1} — given the binary output of each of thedeg(v)
neighbors and the binary variable sensed from the environment, decide whether to broadcast an alert (1 ,

true) or stay silent (0 , false). There is usually littlea priori information on the likelihood of an alert, so
the computation often relies only on the observations of thesensor itself [5].

Issues of interest, studied in this paper, are the probability that a sensor network correctly detects an
alert condition and propagates this information to an outside observer (in our model, represented by atarget
area which the alert signal must reach) and the rate of false alarms [5]. A false alarm may be costly (e.g.,
sending in the fire brigade when there is no fire), but losing a correct alert is in many cases much more
devastating. Finding a balance between these two conflicting goals is an important question in designing a
sensor network for a particular application, for which the costs of false negatives and false positives can be
estimated to some extent.

2 Modeling Sensor Networks

Very often a sensor network model is built on the following assumptions (generalized from [12]): sensors
are deployed on a square area, often a unit square. Each sensor has a communication radius, and usually
the circular area within this radius is considered reachable. The network contains at least onedata sink,
i.e., a node or an area to which the observations and/or decisions of the network are communicated. Each
sensor is assumed to have a (fixed) lifetime, after which it ceases to operate. Sensors may also suffer damage
from the environment or undergo other types of malfunctions[11]; their operation may be either distorted
or completely prevented due to such system failures. It is also imaginable that a malicious adversary will
attempt to interfere with the sensor network by modifying the sensors or introducing sensors that do not
operate as desired by the deployer of the original network.

In this work, we concentrated on a single aspect of sensor networks, namely the decision making in the
sense of deciding when to forward an observed alert, given the time-frame and context of the SFI CSSS.
This is only one of the numerous pressing research issues related to sensor networks and we hope to provide
an approach to aid those designing a sensor network for deployment for a particular task in determining how
the sensor should be set up.

3 A Simplified RePast Model

We built a simulation framework for simplified sensor network models using the Java-based RePast sim-
ulation tool [9] for agent-based modeling; an executable Java-archive with source code is available at
http://www.tcs.hut.fi/˜satu/sensor/ . Table 1 gives a brief discussion of the parameters
available for modification in the simulation framework. Theedges may be drawn in the visualization, but
for even relatively dense networks, this will not be very useful. The alert areaA is shown with dark red
and the target areaT with dark green. Example snapshots of the simulation tool are shown in Figure 1; for
extensive runs, a batch interface without visualization was implemented.

4 Signal Propagation Experiments

We used the RePast model for sensor networks to examine decision-making in the network. If an alarm is
present (i.e., a non-zero alert area is defined), the networkis said to correctlydecide that there is an alarm
if any sensor in the target area will alert. The network is said to make afalse positive decision if it decides
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Agent Countn This determines the total numbern of sensors present in the network. Note that
the number of successfully functioning agents will ben minus the number of mal-
functioning sensors.

Unit Size This parameter governs the visual representation of the display, in pixels.
Sensor distribution The sensors are placed either according to the uniform distribution in [0, 1] ⊂ R

or normal distribution (x- andy-coordinates chosen independently). For the nor-
mal distribution, the mean and standard deviation can be specified; when sam-
pling from the normal distribution, coordinate pairs that fall outside the unit square
[0, 1] × [0, 1] are discarded.

Neighborhood The neighborhood of a sensorv is determined either by including any sensor that
is located within ranger ∈ R from v’s position or by selecting thek ∈ Z nearest
neighbors using Euclidean distance in the unit square. Bothr andk are adjustable
parameters. Note that the range-based neighborhoods are symmetrical, but the
nearest-neighbor relation is not. A completely connected network can easily be
achieved with both settings, choosing eitherk = n−1 or r =

√
2. Neighborhoods

are always non-reflexive.
Sensor malfunction Failures can either be probabilistic, with each sensor having a specified chance to

malfunction, or fixed, with a defined numberm of failed sensors. The modes of
malfunctioning implemented are the following: input always on, input always off,
random input, output always on, output always off, random output, and inverse
output where the sensor executes the decision computation but reverses the result.

Alert areaA A square area within the unit square, defined by the coordinates of the upper left
corner and the lower right corner. Any properly functioningsensor that is located
in the alert area will detect input, whereas no other properly functioning sensor
will have positive input.

Target areaT A square within the unit square defined similarly to the alertarea. These sensors
may be assumed to be under the immediate control of the network owner, which
prevents malfunctions in them.

Decision computation Each sensor that detects no alarm itself, but correctly parses its neighbors’ alarm
broadcasts will make a decision each time step. Two different adjustable rules are
implemented: the sensor uses either a percentage or a fixed count of neighbors that
need to be in alert state as a trigger to alert itself.

Table 1: The parameters of the simplified RePast model for sensor network decision making.

that there is an alarm when no alert area is present. Similarly, a false negative decision occurs when the alert
fails to propagate to the target area. The right side of Figure 1 shows an example of a correct alarm decision.

We varied the following parameters: the sensor countn, the communication ranger, the alert areaA,
and the target areaT , eachindependently, keeping the others in the following valuesn = 200, r = 0.2,
A = (Au, A`) (only present for the true positive/false negative runs) being the upper-left 16th of the unit
square, with the upper left cornerAu = (0, 0) and the lower right cornerA` = (1

4 , 1
4), andT = (Tu, T`)

being the low-right 16th, bounded byTu = (3
4 , 3

4 ) andT` = (1, 1). Failures were not allowed within the
target area. As the parameter-variation sets, we usedn ∈ {100, 125, 150, 175, 200, 225, 250} sensors,
uniformly distributed in the unit square (for methods of ensuring a desired coverage in a sensor network
when sensors have a limited battery life, see for example [3]). Neighborhoods were defined by range

r ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}.

This yields by a simplified calculation the expected number of neighbors per sensor̄k, ignoring boundary
conditions and hence deriving an upper bound. The probability that a sensor is placed inside a fixed circle
of radiusr that fits completely inside the unit square isπr2. As the sensors are placed independently
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Figure 1: On the left, an example snapshot of the sensor network simulation visualization with a true alarm
not yet reaching the target area; on the right, an example of atrue alarm causing a correct decision at the
target area. Correctly functioning sensors are visualizedas circles and malfunctioning ones as squares. The
inside of the sensor is red (darker) if it senses an alarm in the environment and green (lighter) if it does not.
The border color indicates the output state of the sensor: itis red if the sensor is broadcasting an alert and
green otherwise.

and uniformly at random, the number of sensors within such a circle is binomially distributed. There are
n − 1 possible neighbors, each having aπr2 probability of being located within range, which givesk̄ =
d(n − 1)πr2e. See Table 2 for the estimates on different setups — the tablealso lists the combinations ofn
andr studied. We also ran experiments where the alert size was varied: Au = (0, 0) and

A` ∈ {(0.1, 0.1), (0.15, 0.15), (0.2, 0.2), (0.3, 0.3), (0.35, 0.35), (0.4, 0.4), (0.45, 0.45), (0.5, 0.5)},

keepingn = 200 andr = 0.2. Similarly, we varied the target area such thatT` = (1, 1) and

Tu ∈ {(0.5, 0.5), (0.55, 0.55), (0.6, 0.6), (0.65, 0.65), (0.7, 0.7), (0.8, 0.8), (0.85, 0.85), (0.9, 0.9)}.

The adjusted parameters for each(n, r,A, T )-tuple were the malfunction probabilitiespt ∈ [0, 0.5] (for
the true alarms; increments of0.05), pf ∈ [0, 0.05] (for the false alarms; increments of0.005), and the
number of neighborsγ ∈ [1, 5] used to trigger an alert in a sensor. We ran two sets of tests for both
signal propagation settings (the true and the false alarms), altering the synchronization of the network.
In the first set, all sensors fire simultaneously and update their state afterward, whereas the second set
updates sensors in random order, independently from step tostep. The results of the synchronized update
experiments and the random update order experiments were nearly identical with respect to the number of
false positives/negatives, which leads us to conclude thatthe synchronization does not affect the decision-
making process, although it may and presumably does affect the time in which the signal propagates to the
target area.

In the false negative experiments, malfunctioning sensorsalways had output off. The false positive
experiments use malfunctioning sensors that always have input on. The model was allowed to run for 20
steps and then cut off; according to our observations, the signal either reaches the target area in 20 steps or
stalls outside of it in almost all cases. A thousand repetitions were taken for each parameter combination
examined.
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Table 2: Estimated average degreek̄ = d(n − 1)πr2e for each of the sensor network setups studied.

n r k̄ n r k̄

100 0.2 13 200 0.05 2
125 0.2 16 200 0.1 7
150 0.2 19 200 0.15 15
175 0.2 22 200 0.25 40
200 0.2 26 200 0.3 57
225 0.2 29 200 0.35 77
250 0.2 32 200 0.4 101
200 0.45 127 200 0.5 157

5 Results

In this section we present and discuss some plots of the experimental results, examining the selection of
the alarm trigger thresholdγ under different network setups. First we discuss the effectof varying the
total sensor count in the unit square, second the variation of communication range, and third, the effects of
varying the alert and target area sizes are reported.

5.1 Sensor count variation experiments

We studied the optimal number of neighbors to be used as a trigger for a sensor node to broadcast an alert
under possible sensor malfunctions in the network with different failure probabilities. See Figure 4 for a
comparison over the (200, 0.2) and (150, 0.2) runs.

If there are either no (pt = 0) or many failures (pt ≥ 0.45), trusting only one neighbor to signal is
sufficient in propagating a true alert in a (200, 0.2) network, but this is sensitive to false alarms. For most
other failure rates, usingγ = 4 seems to provide the optimal decision-making behavior forn ∈ {150, 200};
only for pt = 0.4, γ = 3 excels. Forpt = 0.4 andpf = 0.04, the network starts being close to useless: at
pt = 0.45 andpf = 0.045, it gives bad data more often than correct data.

False alarm propagation
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Figure 2: The percentage out of 1,000 runs forn = 200 (on the left) andn = 150 (on the right) that
propagated the alert decision to the target area in a synchronized sensor network under real alarm in the alert
area using one to five neighbors as the decision criteria and having a percentage of malfunctioning sensors
that always output false and may cause a false negative.
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Figure 3: The percentage out of 1,000 runs forn = 200 (on the left) andn = 150 (on the right) that
propagated the alert decision to the target area in a synchronized sensor network under no alert condition
using one to five neighbors as the decision criteria and having a percentage of malfunctioning sensors that
always output true and hence may cause a false positive.
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Figure 4: A bar diagram showing the number of runs during which an alarm decision was made under true
alarm conditions with malfunction probabilitypt and false alarms with malfunction probabilitypf . The red
histograms are forn = 200 and the green dotted-line histograms forn = 150.

In Figure 5, we examine the “success rates” of the network in making the correct decision: the sum
of true positives over the repetitions is given for each parameter set, as well as the sum of false positives.
Assuming that the cost of a false positive is equal to that caused by a false negative, the difference of these
sums can be used as a measure of success for a decision-makingsetup (i.e., the number of neighborsγ used
to trigger an alarm). For each value ofγ, we have added over all values ofpt andpf used in the experiments.
Note that also other costs for the false negatives and false positives could be used in analyzing the output
of the simulator. It is evident that a sparse network is highly vulnerable to false positives as it is only able

6



-5000

 0

 5000

 10000

 1  2  3  4  5

n = 100

-5000

 0

 5000

 10000

 1  2  3  4  5

n = 125

-5000

 0

 5000

 10000

 1  2  3  4  5

n = 150

-5000

 0

 5000

 10000

 1  2  3  4  5

n = 175

-5000

 0

 5000

 10000

 1  2  3  4  5

n = 225

-5000

 0

 5000

 10000

 1  2  3  4  5

n = 250

Figure 5: The sums of (n, 0.2)-runs that end in alert decision over the differentpt andpf for comparing the
different values ofγ; in addition to the sums for the true (•) and false (�) alerts, the difference (N)curves of
the two sums are shown.

to properly propagate true positives when a low value ofγ is used. Hence it seems more feasible to build a
dense network and use a higher value forγ, as this optimizes the cost-efficiency in the sense of how many
more true positive alarms there are than false positives.

5.2 Range variation experiments
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Figure 6: The sums of (200,r)-runs over the values ofpt andpf for eachγ; �-plots are the false positives,
•-plots the true positives, andN-plots are the difference of the former two.

In Figure 6 it is seen that for a too small of a ranger, no signal succeeds in propagating to the target
area, neither true nor false alarms. Forn = 200, good range values are 0.25 and 0.30; for higher values ofr,
the propagation of false positives quickly accelerates, which reduces the overall reliability of the network.
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5.3 Alert and target area variation experiments
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Figure 7: The sums over values ofpt andpf for eachγ for the true positives for the alert area variation runs,
with a = A`(x) = A`(y) andAu(x) = Au(y) = 0.

Figure 7 shows that when a low value ofγ is used, the propagation of a true alarm to the target area is
rather unaffected by the size of the alert area, but for higher values ofγ, a larger alert area is, as intuitive,
more likely to cause an alarm in the target area. No false-positive tests were ran, as when an alert area is
actually present, each alarm that makes it to the target areais in fact a useful alarm, regardless of how it
originated.
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Figure 8: The sums over values ofpt andpf for eachγ for the true positives for the target area variation
runs, witht = Tu(x) = Tu(y) andT`(x) = T`(y) = 1.

For the target area alteration (plotted in Figure 8, we foundthatγ = 4 remains the best choice for the
(200, 0.2) setting. Increasing the target area is in practice costly, as the model allows no failures within the
target area and hence that area would need to be supervised with careful attention. All in all, the effect of
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Table 3: A recommendation on the number of neighborsγopt to use in decision-triggering for different
network setups(n, r).

n r γopt n r γopt

100 0.2 1 200 0.15 2
125 0.2 2 200 0.25 5
150 0.2 3 200 0.3 5
175 0.2 3 200 0.35 5
200 0.2 4 200 0.4 5
225 0.2 4 200 0.45 5
250 0.2 5 200 0.5 5

the target area variation is not very significant — the only noticeable jump in performance occurs between
t = 0.1 andt = 0.15.

6 Applications

A sensor network can be deployed to monitor both hostile and benign phenomena, such as toxicity levels
or the functioning of an assembly line [8]. Also ecologists are beginning to employ sensor networks in
habitat monitoring to study e.g. population dynamics [10]. Observing and forecasting natural disasters such
as earthquakes, tornados and forest fires is yet another possible application [5, 11]. Also traffic control
applications exist: monitoring traffic jams by placing sensors in taxi cabs or calculating the number of
available parking spaces [11]. We can also foresee militaryand security applications, such as replacing land
mines that pose a difficulty when disarming is required with asensor network that detects intrusion and
alerts an external defense system instead of reacting itself — this would also provide a strategic benefit, as
the intruder would not be immediately aware of having been noticed. In general terms, simulation studies
such as these are most useful in optimizing the composition of a sensor network when the costs of false
positives and negatives can be estimated and sensors and their count can be tuned to fit the desired behavior.

7 Conclusions

In this study we have examined the effects of design variables for a sensor network in choosing an appro-
priate decision-making criterion for propagating an alertin a network where false positives are possible and
undesirable. Increasing the density of the network — eitherby adjusting the number of sensor per unit
squaren or their communication ranger — naturally increases the number of neighbors that each sensor
has. Increasing the decision thresholdγ, i.e., the number of alerting neighbors that causes a sensorto out-
put an alert itself, monotonously as the number of neighborsreduces the risk of false positives, but also
decreases the success of propagation for true positives.

Assigning a cost to a false positive and a gain for a true positive (or equivalently a cost to a false
negative), one may choose a value ofγ that optimizes the total cost. We have used an unjustified but
application-neutral assumption in our analysis that the cost of a lost alert and the cost of a false alarm were
equal; in many cases the cost of a lost alert can be significantly higher. It is however straightforward to
analyze the simulator output also for other cost assignments.

If the expected area to be covered by a true alert is small, thedecision threshold must be low with
respect to the number of neighbors (this could occur for example with a forest fire, that initiates on a small
area), but for large-area alerts (such as minor earthquakes), a sparser network with a higherγ will be usable.

9



Increasing the target area is only wise if the cost of ensuring proper operation within the area is not costly,
as an increase in the target area does not drastically affectthe decision-making behavior.

As further work, it would be of interest to study mathematically the relation between network density
and the best decision threshold, as well as to examine the behavior of the network under multiple failure
modes. Giving each sensor an exponentially distributed lifetime after which it fails and a distribution over
the different failure modes, a more realistic model would beachieved, however making the analysis more
complex as the number of degrees of freedom would increase. For a realistic model with numerous parame-
ters, we would like to see whether using a genetic algorithm to tune them optimally (cf. the cellular automata
in [4].
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