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Abstract

Given a binary output sensor network of a particular dereity a random distribution, we examine
the effects of simple malfunctioning sensor nodes on thigyabf the network to reach a timely and cor-
rect decision. We examine the effects of malfunctioningsefrequency and distribution, and network
decision-making thresholds on the efficacy of the decisimking process. Based on repeated simula-
tions, we are able to give recommendations on how to tunedhigid parameters of a sensor network to
fit a specific application when the cost of false positivesfaigk negatives can be estimated.

1 Introduction

A sensor network is a collection ofensor nodesthat is spread around an area in which a certain phenomenon
of interest is expected to take place [2]. Often the phenaménsome type of a security threat, the presence
of which needs to be decided by the network [5]. An examplddcba a national park, where forest fires
are to be avoided — sensor nodes that are capable of detedaingmoke or high temperatures are scattered
in the park and the network needs to propagate an alarm totbstfyuard in case of a fire. In most cases,
the sensor placement is not a carefully designed processrhtiter random scattering. Each sensor node is
composed of essentially four components [1]:

e the sensing unit that makes observations of the environment; in thisspape limit our attention to
binary input sensors,

e the processing unit that determines what actions need to be taken; thisngmanly a very limited
computational device with little memory,

e thetransceiver unit that receives and broadcasts signals enabling nearisos nodes to communi-
cate; usually the range of the broadcast is somewhat limited

e the power unit — essentially a battery — that supplies energy for theeiocomponents; in this
study, we exclude energy-related issues, solutions tohwrage been discussed in several papers (see
e.g. [6, 8, 12]).

The data communication between sensors is another comple) studied topic that we leave unat-
tended in this study. We assume that the sensors may havéhadratneighborhood detection, but in the
cases studied in our experiments (Section 4), it sufficasalsansor is able to detect when a neighboring
sensor is broadcasting an alert. In this study, we have ng foeea routing protocol, as the sensors only
communicate to their immediate neighbors; issues of rgutire much studied in existing literature (see
e.g. [7] and the references therein).

tAddress for correspondence: Helsinki University of Tedbgy, P.O. Box 5400, FI-02015 HUT, Finland.



The sensor works asdetector: given a set obbservables (the possible broadcasts of the neighboring
sensors and the state of the local environment detecteclsetising unit), the sensor must choose between
possiblehypotheses (whether there is an alert condition present or not) [5]. Um kestricted scenario, a
sensomw calculates a functiorf : {0,1}4ee()+1 _, 10,1} — given the binary output of each of theg(v)
neighbors and the binary variable sensed from the envirahndecide whether to broadcast an aleért
true) or stay silent(( £ false). There is usually littla priori information on the likelihood of an alert, so
the computation often relies only on the observations of#resor itself [5].

Issues of interest, studied in this paper, are the prolbaliilat a sensor network correctly detects an
alert condition and propagates this information to an detsbserver (in our model, represented bigrget
area which the alert signal must reach) and the rate of false ad&h A false alarm may be costly (e.qg.,
sending in the fire brigade when there is no fire), but losingraect alert is in many cases much more
devastating. Finding a balance between these two confligiirals is an important question in designing a
sensor network for a particular application, for which tlsts of false negatives and false positives can be
estimated to some extent.

2 Modeling Sensor Networks

Very often a sensor network model is built on the followinguwaptions (generalized from [12]): sensors
are deployed on a square area, often a unit square. Eachr $&ssa communication radius, and usually
the circular area within this radius is considered rea@haBlhe network contains at least odata sink,

i.e., a node or an area to which the observations and/oridesisf the network are communicated. Each
sensor is assumed to have a (fixed) lifetime, after whicheises to operate. Sensors may also suffer damage
from the environment or undergo other types of malfunctidig; their operation may be either distorted
or completely prevented due to such system failures. Itss mhaginable that a malicious adversary will
attempt to interfere with the sensor network by modifying #ensors or introducing sensors that do not
operate as desired by the deployer of the original network.

In this work, we concentrated on a single aspect of senswronks$, namely the decision making in the
sense of deciding when to forward an observed alert, giveriithe-frame and context of the SFI CSSS.
This is only one of the numerous pressing research issusedeb sensor networks and we hope to provide
an approach to aid those designing a sensor network foryteplat for a particular task in determining how
the sensor should be set up.

3 A Simplified RePast Model

We built a simulation framework for simplified sensor netlwaonodels using the Java-based RePast sim-
ulation tool [9] for agent-based modeling; an executabla-#achive with source code is available at
http://www.tcs.hut.fi/"satu/sensor/ . Table 1 gives a brief discussion of the parameters
available for modification in the simulation framework. Tédges may be drawn in the visualization, but
for even relatively dense networks, this will not be veryfuseThe alert aread is shown with dark red
and the target are& with dark green. Example snapshots of the simulation tamkhown in Figure 1; for
extensive runs, a batch interface without visualizatios im@plemented.

4 Signal Propagation Experiments

We used the RePast model for sensor networks to examingafeaisking in the network. If an alarm is
present (i.e., a non-zero alert area is defined), the netiswéid to correctlydecide that there is an alarm
if any sensor in the target area will alert. The network isl$aimake dalse positive decision if it decides



Agent Countn This determines the total numberof sensors present in the network. Note that
the number of successfully functioning agents wilkbminus the number of malt
functioning sensors.

Unit Size This parameter governs the visual representation of theagisin pixels.
Sensor distribution | The sensors are placed either according to the uniformilaision in [0, 1] C R
or normal distribution £- andy-coordinates chosen independently). For the nor-
mal distribution, the mean and standard deviation can beifsg#s when sam-
pling from the normal distribution, coordinate pairs tredt butside the unit squar
[0, 1] x [0, 1] are discarded.

Neighborhood The neighborhood of a sensois determined either by including any sensor that
is located within range € R from v’s position or by selecting the € Z nearest
neighbors using Euclidean distance in the unit square. Batidk are adjustable
parameters. Note that the range-based neighborhoods mmaetyical, but the
nearest-neighbor relation is not. A completely connectettvark can easily be
achieved with both settings, choosing eithes n— 1 orr = /2. Neighborhoods
are always non-reflexive.
Sensor malfunction | Failures can either be probabilistic, with each sensorrttpaispecified chance to
malfunction, or fixed, with a defined number of failed sensors. The modes of
malfunctioning implemented are the following: input algayn, input always off,
random input, output always on, output always off, randonpot and inversg
output where the sensor executes the decision computattoe\erses the resulf.
Alert areaA A square area within the unit square, defined by the cooretinaitthe upper left
corner and the lower right corner. Any properly functionsensor that is located
in the alert area will detect input, whereas no other prgpferctioning sensor
will have positive input.

Target ared’ A square within the unit square defined similarly to the adeeta. These sensors
may be assumed to be under the immediate control of the nletwvamer, which
prevents malfunctions in them.

Decision computatior) Each sensor that detects no alarm itself, but correctlygséts neighbors’ alarm
broadcasts will make a decision each time step. Two diftexdjustable rules ar¢
implemented: the sensor uses either a percentage or a fixatlafmeighbors thai
need to be in alert state as a trigger to alert itself.

D

v

Table 1. The parameters of the simplified RePast model famaretwork decision making.

that there is an alarm when no alert area is present. Sigitsidl se negative decision occurs when the alert

fails to propagate to the target area. The right side of Eigushows an example of a correct alarm decision.
We varied the following parameters: the sensor cayrthe communication range the alert area,

and the target are&, eachindependently, keeping the others in the following values= 200, » = 0.2,

A = (Ay, A) (only present for the true positive/false negative runshdpéhe upper-left 16th of the unit

square, with the upper left cornet,, = (0,0) and the lower right corned, = (1, 1), andT = (T, T)

being the low-right 16th, bounded 4, = (%, %) and7y = (1,1). Failures were not allowed within the

target area. As the parameter-variation sets, we used{100, 125, 150, 175, 200, 225, 250} sensors,

uniformly distributed in the unit square (for methods of wnisy a desired coverage in a sensor network

when sensors have a limited battery life, see for example Rjighborhoods were defined by range
r € {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}.

This yields by a simplified calculation the expected numifaresghbors per sensdr, ignoring boundary
conditions and hence deriving an upper bound. The probaliilat a sensor is placed inside a fixed circle
of radiusr that fits completely inside the unit squaresis®. As the sensors are placed independently



Figure 1: On the left, an example snapshot of the sensor nlesimulation visualization with a true alarm
not yet reaching the target area; on the right, an exampletmfeaalarm causing a correct decision at the
target area. Correctly functioning sensors are visual&edircles and malfunctioning ones as squares. The
inside of the sensor is red (darker) if it senses an alarmaretivironment and green (lighter) if it does not.
The border color indicates the output state of the senss:rétd if the sensor is broadcasting an alert and
green otherwise.

and uniformly at random, the number of sensors within suchicdeds binomially distributed. There are
n — 1 possible neighbors, each havingra? probability of being located within range, which gives=
[(n — 1)7r?]. See Table 2 for the estimates on different setups — the &ddelists the combinations of
andr studied. We also ran experiments where the alert size wasdvat,, = (0,0) and

Ay € {(0.1,0.1),(0.15,0.15), (0.2,0.2), (0.3,0.3), (0.35,0.35), (0.4, 0.4), (0.45,0.45), (0.5,0.5) },
keepingn = 200 andr = 0.2. Similarly, we varied the target area such tiiat= (1, 1) and
T, € {(0.5,0.5), (0.55,0.55), (0.6, 0.6), (0.65,0.65), (0.7,0.7), (0.8,0.8), (0.85, 0.85), (0.9,0.9) }.

The adjusted parameters for eaghr, A, T')-tuple were the malfunction probabilities € [0, 0.5] (for

the true alarms; increments 0f05), p; € [0, 0.05] (for the false alarms; increments 0005), and the
number of neighbors € [1, 5] used to trigger an alert in a sensor. We ran two sets of testsdid
signal propagation settings (the true and the false alarai®ring the synchronization of the network.
In the first set, all sensors fire simultaneously and updaté #iate afterward, whereas the second set
updates sensors in random order, independently from stsiepo The results of the synchronized update
experiments and the random update order experiments warly mdentical with respect to the number of
false positives/negatives, which leads us to concludetbigasynchronization does not affect the decision-
making process, although it may and presumably does affedirhe in which the signal propagates to the
target area.

In the false negative experiments, malfunctioning senatwsys had output off. The false positive
experiments use malfunctioning sensors that always haué iin. The model was allowed to run for 20
steps and then cut off; according to our observations, tiabkither reaches the target area in 20 steps or
stalls outside of it in almost all cases. A thousand repetitiwere taken for each parameter combination
examined.



Table 2: Estimated average degfee: [(n — 1)7r?] for each of the sensor network setups studied.

n r k n r k
100 0.2 13| 200 0.05 2
125 0.2 16| 200 0.1 7
150 0.2 19| 200 0.15 15
175 0.2 22| 200 0.25 40
200 0.2 26| 200 0.3 57
225 0.2 29| 200 0.35 77
250 0.2 32| 200 0.4 101
200 0.45 127 200 0.5 157

5 Results

In this section we present and discuss some plots of the iexgetal results, examining the selection of
the alarm trigger threshold under different network setups. First we discuss the efiéatarying the
total sensor count in the unit square, second the variaficoramunication range, and third, the effects of
varying the alert and target area sizes are reported.

5.1 Sensor count variation experiments

We studied the optimal number of neighbors to be used asgetrigr a sensor node to broadcast an alert
under possible sensor malfunctions in the network withedéffit failure probabilities. See Figure 4 for a
comparison over the (200, 0.2) and (150, 0.2) runs.

If there are either nopt = 0) or many failures §; > 0.45), trusting only one neighbor to signal is
sufficient in propagating a true alert in a (200, 0.2) netwdmt this is sensitive to false alarms. For most
other failure rates, using = 4 seems to provide the optimal decision-making behavionfer{150,200};
only forp; = 0.4, v = 3 excels. Fop; = 0.4 andp; = 0.04, the network starts being close to useless: at
pt = 0.45 andpy = 0.045, it gives bad data more often than correct data.

Alarm %

False alarm propagation

Malfunction probability Trigger count

Malfunction probability

Figure 2. The percentage out of 1,000 runs #fiore= 200 (on the left) and: = 150 (on the right) that
propagated the alert decision to the target area in a synizieid sensor network under real alarm in the alert
area using one to five neighbors as the decision criteria avitidp a percentage of malfunctioning sensors
that always output false and may cause a false negative.
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Figure 3. The percentage out of 1,000 runs #fiore= 200 (on the left) andv = 150 (on the right) that
propagated the alert decision to the target area in a synizdaa sensor network under no alert condition
using one to five neighbors as the decision criteria and haaipercentage of malfunctioning sensors that
always output true and hence may cause a false positive.
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Figure 4: A bar diagram showing the number of runs during Wwiaic alarm decision was made under true
alarm conditions with malfunction probabilify and false alarms with malfunction probabiljty. The red
histograms are for. = 200 and the green dotted-line histogramsrfee 150.

In Figure

5, we examine the “success rates” of the network aking the correct decision: the sum

of true positives over the repetitions is given for each perizr set, as well as the sum of false positives.
Assuming that the cost of a false positive is equal to thaseduy a false negative, the difference of these

sums can be

used as a measure of success for a decision-reakipdi.e., the number of neighborsised

to trigger an alarm). For each value-gfwe have added over all valuesygfandp s used in the experiments.
Note that also other costs for the false negatives and faisigiyies could be used in analyzing the output
of the simulator. It is evident that a sparse network is highllnerable to false positives as it is only able
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Figure 5: The sums ofy, 0.2)-runs that end in alert decision over the differgrandp; for comparing the
different values ofy; in addition to the sums for the true)(and false M) alerts, the differencea()curves of
the two sums are shown.

to properly propagate true positives when a low value & used. Hence it seems more feasible to build a
dense network and use a higher value~ogs this optimizes the cost-efficiency in the sense of howyman
more true positive alarms there are than false positives.

5.2 Range variation experiments
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Figure 6: The sums of (20@)-runs over the values gf; andp, for each; B-plots are the false positives,
e-plots the true positives, ankk-plots are the difference of the former two.

In Figure 6 it is seen that for a too small of a rangeno signal succeeds in propagating to the target
area, neither true nor false alarms. ko 200, good range values are 0.25 and 0.30; for higher values of
the propagation of false positives quickly accelerateschwreduces the overall reliability of the network.



5.3 Alert and target area variation experiments
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Figure 7: The sums over valuesgfandp, for eachyy for the true positives for the alert area variation runs,
with a = Ay(z) = Ae(y) and A, (z) = A, (y) = 0.

Figure 7 shows that when a low value-pfs used, the propagation of a true alarm to the target area is
rather unaffected by the size of the alert area, but for ighkies ofy, a larger alert area is, as intuitive,
more likely to cause an alarm in the target area. No falsé@iyp®dests were ran, as when an alert area is
actually present, each alarm that makes it to the targetiai@afact a useful alarm, regardless of how it
originated.
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Figure 8: The sums over values @f andp for each for the true positives for the target area variation
runs, witht = T, (z) = Tp,(y) andTy(x) = Ty(y) = 1.

For the target area alteration (plotted in Figure 8, we fotlvad~y = 4 remains the best choice for the

(200, 0.2) setting. Increasing the target area is in pradistly, as the model allows no failures within the
target area and hence that area would need to be supervigedaséful attention. All in all, the effect of
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Table 3: A recommendation on the number of neighbgys to use in decision-triggering for different
network setupsn, r).

n r “Yopt n r “Yopt
100 0.2 1{ 200 0.15 2
125 0.2 2| 200 0.25 5
150 0.2 3| 200 0.3 5
175 0.2 3| 200 0.35 5
200 0.2 4| 200 0.4 5
225 0.2 4| 200 0.45 5
250 0.2 5/ 200 0.5 5

the target area variation is not very significant — the onltiagable jump in performance occurs between
t =0.1andt = 0.15.

6 Applications

A sensor network can be deployed to monitor both hostile ardgim phenomena, such as toxicity levels
or the functioning of an assembly line [8]. Also ecologiste Beginning to employ sensor networks in
habitat monitoring to study e.g. population dynamics [10]. Observing and faséng natural disasters such
as earthquakes, tornados and forest fires is yet anotheiblgoapplication [5, 11]. Also traffic control
applications exist: monitoring traffic jams by placing sanssin taxi cabs or calculating the number of
available parking spaces [11]. We can also foresee mildad/security applications, such as replacing land
mines that pose a difficulty when disarming is required witbeasor network that detects intrusion and
alerts an external defense system instead of reacting-itséhis would also provide a strategic benefit, as
the intruder would not be immediately aware of having beeticad. In general terms, simulation studies
such as these are most useful in optimizing the compositiaan sensor network when the costs of false
positives and negatives can be estimated and sensors ancbilné can be tuned to fit the desired behavior.

7 Conclusions

In this study we have examined the effects of design varsatdea sensor network in choosing an appro-
priate decision-making criterion for propagating an aled network where false positives are possible and
undesirable. Increasing the density of the network — eitheadjusting the number of sensor per unit
squaren or their communication range— naturally increases the number of neighbors that eaclosens
has. Increasing the decision threshgld.e., the number of alerting neighbors that causes a séosurt-

put an alert itself, monotonously as the number of neighbedsices the risk of false positives, but also
decreases the success of propagation for true positives.

Assigning a cost to a false positive and a gain for a true pes{pbr equivalently a cost to a false
negative), one may choose a value~othat optimizes the total cost. We have used an unjustified but
application-neutral assumption in our analysis that ttst oba lost alert and the cost of a false alarm were
equal; in many cases the cost of a lost alert can be signifjchigher. It is however straightforward to
analyze the simulator output also for other cost assignsnent

If the expected area to be covered by a true alert is smalldéegsion threshold must be low with
respect to the number of neighbors (this could occur for g@tarwith a forest fire, that initiates on a small
area), but for large-area alerts (such as minor earthguakseparser network with a highewill be usable.



Increasing the target area is only wise if the cost of engypioper operation within the area is not costly,
as an increase in the target area does not drastically #fieckecision-making behavior.

As further work, it would be of interest to study mathemadtictéhe relation between network density
and the best decision threshold, as well as to examine thavioerof the network under multiple failure
modes. Giving each sensor an exponentially distributediife after which it fails and a distribution over
the different failure modes, a more realistic model wouldabkieved, however making the analysis more
complex as the number of degrees of freedom would increase fealistic model with numerous parame-
ters, we would like to see whether using a genetic algorithiarie them optimally (cf. the cellular automata
in [4].
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